
28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 1

The EDG Workload
Management System

The INFNGrid Project
Team

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 2

Contents
• The EDG Workload Management

System
• Job Preparation

– Job Description Language
• Job submission

– Different job types
• “Normal” batch jobs
• Interactive jobs
• Checkpointable jobs
• Parallel jobs

• Other WMS capabilities

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 3

The EDG WMS

• The Goal of the Workload Management
System (WMS) is the distributed
scheduling and resource
management in a Grid environment

• What does it allow Grid users to do?
– To submit their jobs
– To execute them on the “best resources”

• The WMS tries to optimize the usage of resources
– To get information about their status
– To retrieve their output

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 4

Job preparation
• Information to be specified when a job has to be

submitted:
– Job characteristics
– Job requirements and preferences on the computing resources

• Also including software dependencies
– Job data requirements

• Information specified using a Job Description Language (JDL)
– Based upon Condor’s CLASSified ADvertisement language (ClassAd)

• Fully extensible language
• A ClassAd

–Constructed with the classad construction operator []
–It is a sequence of attributes separated by semi-colons.
–An attribute is a pair (key, value), where value can be a Boolean, an Integer, a
list of strings, …

»<attribute> = <value>;

• So, the JDL allows definition of a set of attribute, the WMS takes
into account when making its scheduling decision

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 5

Job Description Language (JDL)
• The supported attributes are grouped

in two categories:
– Job Attributes

• Define the job itself
– Resources

• Taken into account by the RB for carrying out the
matchmaking algorithm (to choose the “best” resource
where to submit the job)

• Computing Resource
– Used to build expressions of Requirements and/or Rank

attributes by the user
– Have to be prefixed with “other.”

• Data and Storage resources
– Input data to process, SE where to store output data,

protocols spoken by application when accessing SEs

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 6

JDL: relevant attributes
• JobType

– Normal (simple, batch job), Interactive, MPICH, Checkpointable
– Or combination of them

• Executable (mandatory)
– The command name

• Arguments (optional)
– Job command line arguments

• StdInput, StdOutput, StdError (optional)
– Standard input/output/error of the job

• Environment
– List of environment settings

• InputSandbox (optional)
– List of files on the UI local disk needed by the job for running
– The listed files will automatically staged to the remote resource

• OutputSandbox (optional)
– List of files, generated by the job, which have to be retrieved

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 7

JDL: relevant attributes
• Requirements

– Job requirements on computing resources
– Specified using attributes of resources published in the Information

Service
– If not specified, default value defined in UI configuration file is

considered
• Default: other.GlueCEStateStatus == "Production" (the resource has to

be able to accept jobs and dispatch them on WNs)

• Rank
– Expresses preference (how to rank resources that have already met

the Requirements expression)
– Specified using attributes of resources published in the Information

Service
– If not specified, default value defined in the UI configuration file is

considered
• Default: - other.GlueCEStateEstimatedResponseTime (the lowest

estimated traversal time)
• Default: other.GlueCEStateFreeCPUs (the highest number of free CPUs)

for parallel jobs (see later)

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 8

JDL: relevant attributes
• InputData

– Refers to data used as input by the job: these data are
published in the Replica Location Service (RLS) and stored in
the SEs

– LFNs and/or GUIDs
• DataAccessProtocol (mandatory if InputData has

been specified)
– The protocol or the list of protocols which the application is

able to speak with for accessing InputData on a given SE
• OutputSE

– The Uniform Resource Identifier of the output SE
– RB uses it to choose a CE that is compatible with the job and

is close to SE
• OutputData

– Used for output data upload and registration
– Details later

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 9

Example of JDL File
[
JobType=“Normal”;
Executable = “gridTest”;
StdError = “stderr.log”;
StdOutput = “stdout.log”;
InputSandbox = {“/home/joda/test/gridTest”};
OutputSandbox = {“stderr.log”, “stdout.log”};
InputData = {“lfn:green”, “guid:red”};
DataAccessProtocol = “gridftp”;
Requirements = other.GlueHostOperatingSystemNameOpSys
== “LINUX” && other.GlueCEStateFreeCPUs>=4;

Rank = other.GlueCEPolicyMaxCPUTime;
]

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 10

Job Submission

edg-job-submit [–r <res_id>]
[-vo <VO>][-o <output file>]
<job.jdl>
-r the job is submitted directly to the computing element

identified by <res_id>
-vo the Virtual Organization (if user is not happy with the

one specified in the UI configuration file)
-o the generated edg_jobId is written in the <output file>

Useful for other commands, e.g.:
edg-job-status –i <input file> (or edg_jobId)
-i the status information about edg_jobId contained in the <input

file> are displayed

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

Replica
Catalog

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

submitted

Job
Status

UI: allows users to
access the functionalities
of the WMS

Job submission

UI Network
Server

Job Contr.
-

CondorG

Workload
Manager

Replica
Catalog

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status SE characts

& status

edg-job-submit myjob.jdl
Myjob.jdl

JobType = “Normal”;
Executable = "$(CMS)/exe/sum.exe";
InputSandbox = {"/home/user/WP1testC","/home/file*”,
"/home/user/DATA/*"};
OutputSandbox = {“sim.err”, “test.out”, “sim.log"};
Requirements = other. GlueHostOperatingSystemName == “linux"
&&
other. GlueHostOperatingSystemRelease == "Red Hat 6.2“ &&
other.GlueCEPolicyMaxWallClockTime > 10000;
Rank = other.GlueCEStateFreeCPUs;

submitted

Job
Status

Job Description Language
(JDL) to specify job
characteristics and
requirements

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

Input
Sandbox
files

Job

waiting

submitted

Job
Status

NS: network daemon
responsible for accepting
incoming requests

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job
Status

WM: responsible to take
the appropriate actions to
satisfy the request

Job

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job
Status

Match-
Maker/
Broker

Where must this
job be
executed ?

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job
Status

Match-
Maker/
Broker

Matchmaker: responsible
to find the “best” CE
where to submit a job

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job
Status

Match-
Maker/
Broker

Where are (which SEs)
the needed data ?

What is the
status of the

Grid ?

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job
Status

Match-
Maker/
Broker

CE choice

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job
Status

Job
Adapter

JA: responsible for the final “touches”
to the job before performing submission
(e.g. creation of wrapper script, etc.)

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

Job
Status

JC: responsible for the
actual job management
operations (done via
CondorG)

Job

submitted

waiting

ready

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

Job
Status

Job

Input
Sandbox
files

submitted

waiting

ready

scheduled

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job
Status

Input
Sandbox

submitted

waiting

ready

scheduled

running

“Grid enabled”
data transfers/

accesses

Job

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job
Status

Output
Sandbox
files

submitted

waiting

ready

scheduled

running

done

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job
Status

Output
Sandbox

submitted

waiting

ready

scheduled

running

done

edg-job-get-output <dg-job-id>

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job
Status

Output
Sandbox
files

submitted

waiting

ready

scheduled

running

done

cleared

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 27

Job monitoring

UI

Log
Monitor

Logging &
Bookkeeping

Network
Server

Job Contr.
-

CondorG

Workload
Manager

Computing
Element

RB node

LM: parses CondorG log
file (where CondorG logs
info about jobs) and notifies LB

LB: receives and stores
job events; processes
corresponding job status

Log of
job events

edg-job-status <dg-job-id>
edg-job-get-logging-info <dg-job-id>

Job
status

Possible job states

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 29

Job resubmission

• If something goes wrong, the WMS tries to
reschedule and resubmit the job (possibly on
a different resource satisfying all the
requirements)

• Maximum number of resubmissions:
min(RetryCount, MaxRetryCount)
– RetryCount: JDL attribute
– MaxRetryCount: attribute in the “RB” configuration

file
• E.g., to disable job resubmission for a

particular job: RetryCount=0 in the JDL file

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 30

Other (most relevant) UI commands

•edg-job-list-match
– Lists resources matching a job description
– Performs the matchmaking without submitting the job

• edg-job-cancel
– Cancels a given job

• edg-job-status
– Displays the status of the job

• edg-job-get-output
– Returns the job-output (the OutputSandbox files) to the user

• edg-job-get-logging-info
– Displays logging information about submitted jobs (all the

events “pushed” by the various components of the WMS)
– Very useful for debug purposes

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 31

UI configuration files

• Two main UI configuration files
– Common UI conf file

• $EDG_WL_LOCATION/etc/edg_wl_ui_cmd_var.conf
• User can create his own conf file, and refers to it

with option –-config (-c)

– VO UI conf file
• $EDG_WL_LOCATION/etc/<vo>/edg_wl_ui.conf
• User can create his own VO conf file, and refers to

it with option -–vo / –-config-vo

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 32

Common UI configuration file

• Most relevant attributes
– Default JDL Requirements

• other.GlueCEStateStatus == “Production”

– Default JDL Rank
• - other.GlueCEStateEstimatedresponseTime

– Default VO
– Default verbosity level for edg-job-status

and edg-job-get-logging-info
– Default value for RetryCount

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 33

VO UI configuration file

• Most relevant attributes
– NS(s)

• When submitting a job, the first specified NS is
tried, if the operation fails the second one is
considered, etc.

– LB server(s)
• The LB server to be used for a given job to be

submitted is chosen in a random way among
the listed one

• When a –all query (e.g. edg-job-status –all) is
issued, all these LB servers are queried

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 34

WMS Matchmaking

• The RB (Matchmaker) has to find the more suitable
computing resource (CE) where the job will be executed

• It interacts with Data Management Service and Information
Services

– They supply RB with all the information required for the resolution of
the matches

• The CE chosen by RB has to match the job requirements (e.g.
runtime environment, data access requirements, and so on)

• If FuzzyRank=False (default):
– If 2 or more CEs satisfy all the requirements, the one with the best

Rank is chosen
– If there are two or more CEs with the same best rank, the choice is

done in a random way among them
• If FuzzyRank=True in the JDL:

– Fuzziness in CE choice: the CE with highest rank has the highest
probability to be chosen

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 35

WMS matchmaking scenarios

• Possible scenarios for matchmaking:
1. Direct job submission

edg-job-submit –r <CEId>
2. Job submission with only computational

requirements
Nor InputData nor OutputSE specified in the
JDL

3. Job submission with also data access requirements
InputData and/or OutputSE specified in the JDL

4. Matchmaking to minimize the overall cost to
access data (exploiting the getAccessCost
capability)

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 36

Direct job submission

edg-job-submit –r CEId

• Job is simply submitted on the given CE
• RB doesn’t perform any matchmaking

algorithm
• Information services not queried at all

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 37

Job submission with only
computational reqs

• Nor InputData nor OutputSE specified in the JDL
• Matchmaking algorithm:

– Requirements check
• RB contacts the IS to check which CEs satisfy all the

requirements
• This includes also authorization check (where is the user

allowed to submit jobs ?)

– Suitable resources directly queried (GRISes queried) to
evaluate Rank expression (which usually refers to dynamic
values)

– If more than one CE satisfies the job requirements, the CE
with the best rank is chosen by the RB (or has the highest
probability to be chosen, if Fuzzyrank enabled)

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 38

Job submission with data
access reqs

• InputData and/or OutputSE specified in the
JDL

• RB strategy: submit jobs close to data
• Matchmaking algorithm:

– Requirements check as in the previous case
– CE chosen among the suitable ones (the CEs

which passed the requirements check) and where
most of the needed files are “close” to it (where
most of the needed files are stored on SEs close
to the considered CE)

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 39

Matchmaking with GetAccessCost

• Can be used when InputData has been
specified in the JDL

• Used when Rank = other.DataAccessCost has
been specified in the JDL

• Matchmaking algorithm:
– Requirements check as in the previous case
– The CE is chosen by the getAccessCost method

provided by data Management Services among the
suitable CEs (the CEs which passed the
requirements check)

• Goal: minimizing the overall data access cost
• Taking into account data location and network

information

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 40

Example of job submission

• User logs in on the UI
• User issues a grid-proxy-init and enters his certificate’s password,

getting a valid Globus proxy
• User sets up his or her JDL file
• Example of Hello World JDL file :

[
Executable = “/bin/echo”;
Arguments = “Hello World”;
StdOutput = “Messagge.txt”;
StdError = “stderr.log”;
OutputSandbox = {“Message.txt”,”stderr.log”};

]

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 41

Example of job submission

• User issues a: edg-job-submit HelloWorld.jdl
and gets back from the system a unique Job Identifier (JobId)

• User issues a: edg-job-status JobId
to get logging information about the current status of his Job

• When the “Done” status is reached, the user can
issue a: edg-job-get-output JobId
and the system returns the name of the directory where the

job output can be found on the UI machine

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 42

Example of job submission

$ edg-job-submit HelloWorld.jdl

JOB SUBMIT OUTCOME

The job has been successfully submitted to the Network Server.
Use edg-job-status command to check job current status. Your job
identifier (edg_jobId) is:

- https://lxshare0403.cern.ch:9000/KoBA-IgxZyVpLKhANfrhHw
**

JobId

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 43

Example of job submission

$ edg-job-status https://lxshare0403.cern.ch:9000/KoBA-IgxZyVpLKhANfrhHw

BOOKKEEPING INFORMATION:

Printing status info for the Job : https://lxshare0403.cern.ch:9000/KoBA-
IgxZyVpLKhANfrhHw

Current Status: Done (Success)
Exit code: 0
Status Reason: Job terminated successfully
Destination: lxshare0405.cern.ch:2119/jobmanager-pbs-infinite
reached on: Wed Jun 18 12:06:10 2003

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 44

Example of job submission

$ edg-job-get-output --dir Results https://lxshare0403.cern.ch:9000/KoBA-
IgxZyVpLKhANfrhHw

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:
- https://lxshare0403.cern.ch:9000/KoBA-IgxZyVpLKhANfrhHw
have been successfully retrieved and stored in the directory:
/shift/lxshare072d/data01/UIhome/sgaravat/Results/KoBA-IgxZyVpLKhANfrhHw

$ more Results/KoBA-IgxZyVpLKhANfrhHw/Message.txt
Hello World
$ more Results/KoBA-IgxZyVpLKhANfrhHw/stderr.log
$

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 45

Proxy renewal
• Why?

– To avoid job failure because it outlived the validity of the initial proxy,
avoiding considering long term user proxies

• Solution
– Short term proxies created as usual in the UI machine

• grid-proxy-init –hours <hours>
– User registers proxy into a MyProxy server:

• myproxy-init –s <server> [-t <cred> -c <proxy>]
–server is the server address (e.g. lxshare0375.cern.ch)
–cred is the number of hours the proxy should be valid on the server
–proxy is the number of hours renewed proxies should be valid

– User specifies the MyProxy server in the JDL to enable proxy renewal:
• MyProxyServer=myproxy.host.name;

– The proxy is automatically renewed by WMS without user intervention for all
the job life

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 46

GUI & APIs

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 47

Interactive jobs
• Specified setting JobType = “Interactive” in JDL
• When an interactive job is executed, a window for the stdin,

stdout, stderr streams is opened
– Possibility to send the stdin to

the job
– Possibility the have the stderr

and stdout of the job when it
is running

• Possibility to start a window for
the standard streams for a
previously submitted interactive
job with command
edg-job-attach

• Also possible to forward the
standard streams to named
pipes on the UI node

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 48

Job checkpointing
• Checkpointing: saving from time to time job state

– Useful to prevent data loss, due to unexpected failures
– Approach: provide users with a “trivial” logical job checkpointing

service
– User can save from time to time the state of the job (defined by the

application)
– A job can be restarted from an intermediate (i.e. “previously” saved)

job state
• Different than “classical” checkpointing (i.e. saving all the

information related to a process: process’s data and stack
segments, open files, etc.)

– Very difficult to apply (e.g. problems to save the state of open
network connections)

– Not necessary for many applications
• To submit a checkpointable job

– Code must be instrumented (see next slides)
– JobType=Checkpointable to be specified in JDL

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 49

Job checkpointing example

int main ()
{

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;}
...

exit(0); }

Example of
Application
(e.g. HEP MonteCarlo
simulation)

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 50

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);

< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

User code
must be easily
instrumented in order
to exploit the
checkpointing
framework …

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 51

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);

< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

•User defines what is a state
•Defined as <var, value> pairs
• Must be “enough” to restart a

computation from a
previously saved state

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 52

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);

< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

User can save
from time to time
the state of the job

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 53

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);

< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

Retrieval of the last saved state
The job can restart from that
point

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 54

Job checkpointing scenarios
• Scenario 1

– Job submitted to a CE
– When job runs it saves from time to time its state
– Job failure, due to a Grid problems (e.g. CE problem)
– Job resubmitted by the WMS possibly to a different CE
– Job restarts its computation from the last saved state

• No need to restart from the beginning
• The computation done till that moment is not lost

• Scenario 2
– Job failure, but not detected by the Grid middleware
– User can retrieve a saved state for the job (typically the last one)

• edg-job-get-chkpt –o <state><edg-jobid>
– User resubmits the job, specifying that the job must start from a

specific (the retrieved one) initial state
• edg-job-submit –chkpt <state> <JDL file>

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 55

Submission of parallel jobs

• Possibility to submit MPI jobs
• MPICH implementation supported
• Only parallel jobs inside a single CE can be submitted
• Submission of parallel jobs very similar to normal jobs

– Just needed to specify in the JDL:
• JobType= “MPICH”
• NodeNumber = n;

–The number (n) of requested CPUs

• Matchmaking
– CE chosen by RB has to have MPICH sw installed, and at least

n total CPUs
– If there are two or more CEs satisfying all the requirements,

the one with the highest number of free CPUs is chosen

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 56

Gangmatching

• With “standard” matchmaking only 2
“involved entities” the job and the CE

• Gangmatching allows to take into account,
besides CE information, also SE information in
the matchmaking

• Typical use case for gangmatching:
– My job has to run on a CE close to a SE with at

least 200 MB of available space:

Requirements = anyMatch(other.storage.CloseSEs,
target.GlueSAStateAvailableSpace > 200);

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 57

Output data registration
OutputData = {

[
OutputFile = "filename1";
LogicalFileName = "lfn:mylfn1";
StorageElement = "testbed007.cnaf.infn.it"

],
[

OutputFile = "filename2"
],
[

OutputFile = "filename3";
LogicalFileName = "lfn:mylfn2"

],
[

OutputFile = "filename4";
StorageElement = "testbed007.cnaf.infn.it"

]
}

Both LFN and
target SE
specified

Nor LFN nor
target SE
specified

Only LFN
specified

Only target SE
specified

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 58

What’s next (v. 3)
– Dependencies of jobs

• Integration of Condor DAGMan
• “Lazy” scheduling: job (node) bound to a resource (by RB) just

before that job can be submitted (i.e. when it is free of
dependencies)

– Support for job partitioning
• Use of job checkpointing and DAGMan mechanisms

– Original job partitioned in sub-jobs which can be executed in parallel
– At the end each sub-job must save a final state, then retrieved by a
job aggregator, responsible to collect the results of the sub-jobs and
produce the overall output

– Grid Accounting
• Based upon a computational economy model

– Users “pay” in order to execute their jobs on the resources and the
owner of the resources “earn” credits by executing the user jobs

– To take account of resource usage
– And to make possible a nearly stable equilibrium able to satisfy the
needs of both resource `producers' and `consumers‘

28-29 January, 2004 EGrid Project - Grid Tutorial, Trieste 59

Further information

• The EDG User’s Guide
http://marianne.in2p3.fr

• EDG WP1 Web site
http://www.infn.it/workload-grid
In particular WMS User & Admin
Guide and JDL docs

• ClassAd
https://www.cs.wisc.edu/condor/cl
assad

