

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

H4.SMR/1642-10

"IAG-IASPEI Joint Capacity Building Workshop on Deformation Measurements and Understanding Natural Hazards in Developing Countries"

17 - 23 January 2005

The Earthquake Cycle, Geodesy and Earthquake Hazards: General Models and Case Studies from Subduction and Transform Boundaries

J. Freymueller

Geophysical Institute University of Alaska, Fairbanks

The Earthquake Cycle, Geodesy and Earthquake Hazards: General Models and Case Studies from Subduction and Transform Boundaries

Jeff Freymueller Geophysical Institute University of Alaska Fairbanks

IAG-IASPEI Joint Capacity Building Workshop on Deformation Measurements and Understanding Natural Hazards in Developing Countries, 17-23 January 2005

The Abdus Salam International Centre for Theoretical Physics

University of Alaska Fairbanks

Block-like Motion

Outline

- Physics of Faults: Stick-Slip vs. Stable Sliding
- A Simple "Earthquake Cycle" Model
- Geodetic Implications
- Examples
- Learning from Large Earthquakes
- Postseismic Deformation Effects

Physics of Faults: Stick-slip vs. Stable Sliding

- An earthquake is caused by sudden slip on a fault
 - Mw 4-5: a few centimeters average slip
 - Mw 7: a few meters average slip
 - Mw 9: 10-20 average slip

NB. Typical fault slip rates are mm to cm per year

• Why do faults move many years or centuries' worth of slip in a matter of seconds during an earthquake?

Physics of Faults: Terminology

Can divide fault zone based on how rocks deform (terminology of Scholz)

- Schizosphere deforms by brittle failure of rock
- Plastosphere deforms by flow: plastic, ductile
- Seismic slip involves brittle failure, occurs in schizosphere

Upper Crust: "Schizosphere"

Lower Crust: "Plastosphere"

Is This Reasonable?

- Temperature increases with depth
 - Expect non-brittle failure at depth
- Most continental earthquakes are shallow
 - Strike-slip earthquakes in upper 10-15 km
 - Crustal dip-slip earthquakes similar
 - Subduction zone thrust earthquakes deeper
- Does not explain intermediate and deep Wadati-Benioff zone seismicity
- *But*, fault slip not only controlled by depth

Two Types of Slip

- Stick-slip (seismic)
 - Two sides of interface stuck together: **friction**
 - Slip occurs when friction is overcome
 - Slip controlled by dynamic friction, healing
- Stable Sliding (aseismic)
 - Two sides slide continually past each other
 - Slip occurs all the time
 - Slip controlled by plastic, ductile, or viscous yielding
- Transient slip also occurs

A Simple Analogue: Spring Slider

- Block is held in place by force of friction
- Moving load point increases elastic force
- Slips when elastic force exceeds friction

A Simple Analogue: Spring Slider

- Block is held in place by force of friction
- Moving load point increases elastic force
- Slips when elastic force exceeds friction

Frictional Instability

- Velocity-weakening (dynamic < static friction)
 - Fe > Ff; block accelerates
 - Velocity increases, Ff decreases; block accelerates more
 - Fe decreases with slip, in few seconds Fe < Ff; block decelerates
 - Velocity decreases, Ff goes up; block decelerates and stops

Alternative: Stable Sliding

- Velocity-strengthening (dynamic > static friction)
 - Fe > Ff; block accelerates
 - Velocity increases, Ff increases; acceleration stops
 - But velocity remains the same
 - Velocity reaches equilibrium with shear stress

Rate and State Friction Law

- These two kinds of frictional behavior both described by a rate and state-dependent friction law (Ruina, 1983)
 - Empirical relation based on laboratory data
 - Describes the evolution of friction with slip velocity and time
 - Describes fault weakening and healing
- It works!

Slow Slip Events

2003 2004 Figure 2. Melbourne et al, in review Geodesy Laboratory/PANGA CWU

-120

-110

100

90

80

70

50

40

30

20

10

0

mm

ings,

- 60

Displacement and Slip Model

A More Realistic Picture

Can divide fault zone based on how fault slips

- Seismogenic Crust exhibits stick slip
- Transitional Zone may exhibit complex behavior
- Aseismic Crust exhibits stable sliding
- Crustal earthquakes involve slip of seismogenic crust and possibly transitional zone

Seismogenic Crust: Stick Slip

Transitional Zone

Aseismic Crust: Stable Sliding or plastic (flow) deformation

A Simple "Earthquake Cycle" Model

- Based on the spring-slider analogue model
- Between earthquakes:
 - Shallow fault is locked
 - Deeper fault is creeping at long-term slip rate
 - Stress builds up: elastic strain energy stored in crust
- During earthquake, shallowfault slips
 - Stress on fault reduced
- Cycle repeats forever

Geodetic Implications

- Between earthquakes
 - Fault does not slip from surface to locking depth
 - Fault slips continuously beneath locking depth
 - May be finite transition zone between locked and slipping parts
- During earthquake
 - Shallow fault slips

Shallow Locked Fault Causes Deformation

- Earth deforms as elastic body over short timescales
- Locked shallow fault + slipping deep fault produces elastic strain in vicinity of fault
 - Most important close to fault
 - Far from fault, motion is same as rigid blocks
- Post-seismic deformation to be discussed later

Elastic Fault Deformation

Example: 2D strike slip fault

- (Infinitely long fault)
- Velocity profile follows arctangent(x/D)
- Half of deformation seen on each side of fault
- •Most elastic deformation within 2-3 locking depths of fault

Modeling Elastic Deformation

- We can model effect of locked faults using elastic dislocation theory with an elastic half-space
 - There are simple analytical expressions for 2D
 - There are standard computer codes for 3D
 - The same codes work for earthquake (coseismic) deformation
- A simple approach is to represent motions by a combination of rigid block motion and "backslip" to cancel the motion on the shallow fault (Savage and Burford, 1973)
- Backslip represents the *slip deficit* of the shallow fault

Superposition

2D Strike Slip Fault $V(x) = \frac{S}{\pi} a tan \left[\frac{(x - x_f)}{D} \right]$

Savage and Burford (1973)

V(x) = fault-parallel velocity at position x

S = long-term slip rate

D = locking depth

x = perpendicular distance of site from fault

 $x_f = position of fault$

In this formulation, a site on the fault has zero velocity

Changing the Locking Depth

How to Constrain Locking Depth?

- Good correlation between maximum depth of microseismicity and maximum depth of slip in large earthquakes
- First-order approximation: maximum depth of microseismicity = locking depth
 - Usually 12-18 km for strike-slip faults
 - Usually 25-50 km for subduction thrust
- Remember uncertainty in source depth!
- Or estimate it with slip rate from geodetic data

Maximum Depth of Seismicity

Hill et al., 1991

Detailed Depth Sections

Calaveras fault

boxes are 6 km wide, 12 km deep. windows are 4 km long and centered on numbered distance along strike.

Waldhauser et al., 1999

Examples from California

- Sierra Nevada-Great Valley (SNGV) block is stable
- Pure strike-slip west of SNGV
- Extension east of SNGV
- Also strike slip on eastern edge of SNGV

Northern California

GMT Nov 5 15:17 Figure 1, Freymueller et al.

Freymueller et al., 1999

Velocities

- Relative to PCFC
 - Defined by VLBI and PTRY site
- Motions are parallel to SNGV-PCFC relative motion
- 40 mm/yr total across Coast Ranges

Relative to QUIN on SNGV

Models

- 3 parallel strike-slip faults 30-40 km apart
- Have some constraints on slip rate from geology
- Locking depth not well known
- Some shallow creep documented

Slip Rate Tradeoffs

- Total slip rate 40 mm/yr
 - SAF 17.4 (+2.5,-3.1)
 - MF 13.9 (+4.1,-2.8)
 - BSF 8.2 (+2.1,-1.9)
 - BSF creeping
- Significant tradeoffs between individual fault slip rates

SAF Locking Depth at Pt. Arena

Comments on Models

- For multiple parallel faults, the total slip rate of all faults is well determined, but the individual slip rates are not.
- If locking depths are well known, this resolution problem is eased.
- Data can be explained reasonably well by putting more slip on central fault with very deep locking depth

Slip Rate/Locking Depth Tradeoff

Fault-Parallel Velocities

(Earlier) Model For Yakutat Region

- Fletcher and Freymueller (2003)
- Fairweather Fault
 - $-46\pm2 \text{ mm/yr}$
 - -9.0 ± 0.8 km locking
- Denali fault
 - 3.7 \pm 1.4 mm/yr
 - Dashed line is for fault location displaced 5 km west

Same Model Fits New Data

Comments on Simple Model

- Simple elastic model works well in many cases
- To estimate both slip rate and locking depth, you need an isolated fault and a good distribution of sites within 10-20 km of fault
- Additional information from geology/paleoseismology (slip rate) and seismicity (locking depth) are usually needed to supplement geodetic data

Major Faults and Earthquakes

Alaska Peninsula Velocities

Semidi Profile Model

Semidi Profile Results

- Locked zone is ~180 km wide
- Estimated slip deficit is ~80% of plate motion rate
- -> Wide, strongly-coupled seismogenic zone
- Residual trench-parallel component of several mm/yr

Sanak Profile

Sanak to Unimak Data

Sanak Profile Model

Best-fit is no locked zone
How wide can locked zone be without violating data?

Freymueller and Beavan, 1999

How Far Does Creeping Extend?

How Sharp is Transition?

Correlated Features?

Mendocino Triple Junction

Subduction/Transform Boundary

- Pacific-North America-Juan de Fuca triple junction
- Southern end of the Cascadia subduction zone
- Northern end of San Andreas fault system

Williams et al., in prep

Removing Effect of Subduction

- Want to study upper plate structures
- Calculate elastic strain using model of Flück et al. (1997)
- Gorda Plate assumed to end at Mendocino Fault

Subduction Correction

Velocities with Subduction Removed

Interpreted Features

Learning From Large Earthquakes

- November 3, 2002, about 1:30 pm local time
- Mostly ruptured the Denali fault
 - Also Susitna Glacier fault (thrust) and Totschunda fault (strike-slip)
- Initial estimated magnitude $M_W 7.9$
- Preceded by $M_W 6.7$ on October 23
- Preceded by $M_L \sim 4.5$ foreshock

Mainshock and Aftershocks

Most Recent Pre-earthquake Velocity Field

Pre- Earthquake GPS

Landslide on the Black Rapids Glacier – view up glacier to the west

Photo by Dennis Trabant, USGS

Measuring GPS Displacements

Western Part of Rupture

Fault-normal Profile

Fault-Normal and Vertical

Why Does Along-Strike Gradient Matter?

horizontal displacements

Slip Model

Total Moment Along Strike

What We Learned From Earthquake

- Depth of slip in earthquake (mostly < 12 km) showed provided locking depth
 - Prior to earthquake, almost no microseismicity
- Earthquake made geometry of fault more clear
- Earthquake confirmed suspicions about the connection between Denali and Totschunda faults

Short-Term vs. Long-Term Rates

- Q. Do geodetic measurements over a few years give a good estimate of long-term measurements over thousands of years?
- A. Quite often, but not always.
- Creep or slow slip events
- Postseismic Deformation
- Evolution of fault systems over time

Agreement or Disagreement with Geological Slip Rates

- Many examples of agreement
 - GPS agrees at plate tectonic scale
 - San Andreas fault system
 - North Anatolian fault
- Some notable disagreements
 - Central Asia: Altyn Tagh and Karakorum
 - California: Garlock fault, Eastern California Shear Zone
 - Conjugate strike-slip fault systems at the ~50 km scale

Slow Slip Events

Displacement and Slip Model

Implications of Slow Slip

- Short-term average velocity not same as long-term average (months vs. years)
- Locking depth will depend on averaging time for velocities and interval of measurements

Slow Slip Events Worldwide

- Very common at subduction zones
 - Cascadia, Japan, Mexico, Alaska
 - Some events very large (Alaska, Mexico, Tokai/Japan)
 - Not always regularly repeating
 - Can be hard to detect (small displacements)
- Similar (non-repeating) creep events seen at a couple of special places on San Andreas
- Other strike slip faults?

Fairbanks After Denali Earthquake

ITRF Time Series

De-trended, offsets removed Time series from http://sopac.ucsd.edu

E212.14, N63.27, 940.59 (m)

19 Daily Solutions (2002.8 - 2002.9)

Motion rate 230.6 +- 34.0 (mm/yr) Repeatability 3.2 (mm)

Motion rate 97.2 +- 0.0 (mm/yr) Repeatability 0.0 (mm)

Time Serice of Sile Pacifica drawn by skds at GPUAE, The New 20 00-24-06 AKST 2002

Station : DNLY

E214.11- N63.70- 554.28 (m)

13 Daily Solutions (2002.8 - 2002.9)

Motion rate: 52.5 +- 0.0 (mm/yr) Repeatability: 0.0 (mm)

Motion rate 05.8 ++ 0.0 (mm/yr) Repeatability 0.0 (mm)

Motion rate: 153.4 --- 0.0 (mm/yr) Repeatability: 0.0 (mm)

Postseismic Displacements

One year of postseismic deformation: Average velocities are 20-25 times faster than before the earthquake

Pre-earthquake velocities were only \sim 5 mm/y

Postseismic Deformation

- Shallow afterslip
 - Commonly up to 10-20% of coseismic
- Deep afterslip
 - Can be significant fraction of coseismic
- Poroelastic relaxation
 - Groundwater migration caused by coseismic stress changes
- Viscoelastic relaxation
 - Flow in lower crust
 - Flow in upper mantle
- All mechanisms will occur, but which is most important?

Where, How Much, How Long?

- Shallow afterslip
 - Very close to fault, weeks to months (maybe 1 year)
- Deep afterslip
 - Broader signal, usually decays within a few years
- Poroelastic relaxation
 - Concentrated close to fault, for larger earthquakes mostly several cm or less
- Viscoelastic relaxation
 - Can be very broad, may last for years to decades
- A rule of thumb: Postseismic effects are likely to be significant out to a distance of ~1 fault length away from rupture

Viscoelastic Coupling Model

Common: Elastic half-space Viscoelastic coupling model: Elastic layer over viscoelastic half-space (Savage and Prescott, 1978)

Data and Elastic Model

Richardson/Pipeline Profile Elastic Fault parallel Velocity (mm/yr) 10└─ 300 Distance North of fault (km)

Data and Viscoelastic Model

A More Realistic Picture

Can divide fault zone based on how fault slips

- Crustal earthquakes involve slip of seismogenic crust and possibly transitional zone
- Mantle is certainly viscoelastic, fault-mantle connection less clear
- Subject to intensive ongoing research

Seismogenic Crust: Stick Slip

Transitional Zone

Plastic (flow) deformation, viscoelastic