

The Abdus Salam
International Centre for Theoretical Physics

 \bigcirc **International Atomic**
Energy Agency

 SMR: 1643/8

WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY

 (7 - 18 February 2005)

"Biophotonics at the Nanoscale" - II

presented by:

L. Novotny The Institute of Optics Rochester U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

SP FRET

(single-pair fluorescence resonance energy transfer)

www.nano-optics.org

The Institute of Optics, University of Rochester, Rochester, NY, 14627. Lukas Novotny

EXAMPLE: ROCKERSWITH MODEL FOR GlpT

Reaction cycle of substrate translocation: Proposed single-binding-site, alternating-access mechanism with a rocker-switch type of movement . Positions of Arg45 and Arg269 are indicated. P_i is represented by a small disk, and the G3P molecule as a small disk and a triangle.

TEXTBOOK (Cambridge Univ. Press)

PRINCIPLES OF NANO-OPTICS

Lukas Novotny

The Institute of Optics University of Rochester, Rochester, New York

Bert Hecht

Institute of Physics University of Basel, Basel, Switzerland

J . L e s o i n e

CONFORMATIONAL STATES OF AE1

Collaboration with Prof. P. Knauf (Biochemistry, Rochester)

FOERSTER ENERGY TRANSFER

FOERSTER WHO ?

Robert S. Knox (left) and Theodore Foerster (right) preparing for mechanical energy transfer. Springwater, NY, August 1973.

CYTOPLASMIC DOMAIN OF AE1 (CDB3)

STATIC CONFORMATIONS OF AE1

STATIC CONFORMATIONS OF AE1

PROBLEM: PURIFICATION

ENERGY TRANSFER THEORY

LIMIT: WEAK COUPLING

POWER TRANSFER

$$
P_{D\to A} \,=\, -\frac{1}{2}\int_{V_A} {\rm Re}\{\mathbf{j}_A^* \cdot \mathbf{E}_D\}\,dV
$$

For
$$
\mathbf{j}_A = -i\omega_o \mu_A \delta(\mathbf{r} - \mathbf{r}_A)
$$
 $P_{D \to A} = \frac{\omega_o}{2} \operatorname{Im} \{ \mu_A^* \cdot \mathbf{E}_D(\mathbf{r}_A) \}$

Induced dipole $\mu_A = \ddot{a}_A^* \mathbf{E}_D(\mathbf{r}_A)$ with $\ddot{a}_A = \alpha_A \mathbf{n}_A \mathbf{n}_A$:

$$
P_{D\rightarrow A} = \frac{\omega_o}{2} \operatorname{Im}\{\alpha_A\} \left| \mathbf{n}_A \cdot \mathbf{E}_D(\mathbf{r}_A) \right|^2
$$

ABSORPTION CROSS-SECTION

$$
\sigma(\omega_o) \;=\; \frac{\langle P(\omega_o) \rangle}{I(\omega_o)}
$$

$$
\sigma(\omega_o) \; = \; \frac{\left(\omega_o/2\right)\text{Im}\{\alpha(\omega_o)\}\,\langle\left|\mathbf{n}_\text{P}\!\cdot\mathbf{E}_D\right|^2\rangle}{(1/2)\,(\varepsilon_o/\mu_o)^{1/2}\,n(\omega_o)\left|\mathbf{E}_D\right|^2} \; = \; \frac{\omega_o}{3}\sqrt{\frac{\mu_o}{\varepsilon_o}}\,\frac{\text{Im}\{\alpha(\omega_o)\}}{n(\omega_o)}
$$

$$
P_{D\to A} = \frac{3}{2} \sqrt{\frac{\varepsilon_o}{\mu_o}} n(\omega_o) \sigma_A(\omega_o) \left| \mathbf{n}_A \cdot \mathbf{E}_D(\mathbf{r}_A) \right|^2
$$

FIELD OF DONOR EVALUATED AT ACCEPTOR

$$
\mathbf{E}_D(\mathbf{r}_A) = \omega_o^2 \mu_o \, \vec{\mathbf{G}}(\mathbf{r}_D, \mathbf{r}_A) \mu_D
$$

Short-hand:

$$
T(\omega_o) = 16\pi^2 k^4 R^6 \left| \mathbf{n}_A \cdot \vec{\mathbf{G}} \left(\mathbf{r}_D, \mathbf{r}_A \right) \mathbf{n}_D \right|^2
$$

where $R = |\mathbf{r}_D - \mathbf{r}_A|$ $k = (\omega_o/c) n(\omega_o).$

$$
\frac{\gamma_{D\to A}}{\gamma_o} = \frac{9c^4}{8\pi R^6} \frac{\sigma_A(\omega_o)}{n^4(\omega_o)\omega_o^4} T(\omega_o) \Bigg| = \frac{9c^4}{8\pi R^6} \int_0^\infty \frac{\delta(\omega - \omega_o) \sigma_A(\omega)}{n^4(\omega)\omega^4} T(\omega) d\omega
$$

INCLUDE EMISSION SPECTRUM

$$
\int_0^\infty \delta(\omega - \omega_o) d\omega = 1 \longrightarrow \int_0^\infty f_D(\omega) d\omega = 1
$$

$$
\frac{\gamma_{D\to A}}{\gamma_o} \;=\; \frac{9c^4}{8\pi R^6} \int\limits_0^\infty \frac{f_D(\omega)\;\sigma_A(\omega)}{n^4(\omega)\;\omega^4}\, T(\omega)\;d\omega
$$

Evaluate $T(\omega)$:

$$
T(\omega) = (1 - k^2 R^2 + k^4 R^4) (\mathbf{n}_A \cdot \mathbf{n}_D)^2 +
$$

$$
(9 + 3k^2 R^2 + k^4 R^4) (\mathbf{n}_R \cdot \mathbf{n}_D)^2 (\mathbf{n}_R \cdot \mathbf{n}_A)^2 +
$$

$$
(-6 + 2k^2 R^2 - 2k^4 R^4) (\mathbf{n}_A \cdot \mathbf{n}_D) (\mathbf{n}_R \cdot \mathbf{n}_D) (\mathbf{n}_R \cdot \mathbf{n}_A)
$$

$$
\langle T(\omega) \rangle \; = \; \frac{2}{3} \, + \, \frac{2}{9} k^2 R^2 \, + \; \frac{2}{9} k^4 R^4
$$

ONLY NEAR-FIELD TERMS

$$
\frac{\gamma_{D\to A}}{\gamma_o} \;=\; \left[\frac{R_o}{R}\right]^6\,,\qquad R_o^6 \;=\; \frac{9\,c^4\,\kappa^2}{8\pi}\,\int\limits_0^\infty\frac{f_D(\omega)\;\sigma_A(\omega)}{n^4(\omega)\,\omega^4}\;d\omega
$$

$$
\kappa^2 = \left[\mathbf{n}_A \cdot \mathbf{n}_D - 3\left(\mathbf{n}_R \cdot \mathbf{n}_D\right)\left(\mathbf{n}_R \cdot \mathbf{n}_A\right)\right]^2
$$

EXAMPLE: Alexa Fluor 532 (A) and Fluorescein (D)

DONOR / ACCEPTOR FLUORESCENCE

EXAMPLE: DNA HOLIDAY JUNCTION

Taekjip Ha (Urbana-Champaign)

STRONG COUPLING REGIME

SUMMARY

FRET IS A POWERFUL TECHNIQUE TO MEASURE NANOSCALE DISTANCES

EFFECT CAN BE UNDERSTOOD BASED ON ANTENNA THEORY

- Gives correct Result for Near-field, Intermediate Field, and Farfield
- Strong Coupling Regime requires QM

