

The Abdus Salam
International Centre for Theoretical Physics

 \circledast International At Energy Agency

SMR: 1643/20

WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY

 (7 - 18 February 2005)

"Nonlinear Optical Waveguides" - III

presented by:

M. Fejer E.L. Ginzton Laboratory Stanford University Stanford, CA 94305 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Nonlinear Waveguides in Microstructured Media: Materials, Devices, and Applications

Fixing Some Problems &Pushing the Envelope

M. M. Fejer E. L. Ginzton Laboratory Stanford University

fejer@stanford.edu

Fabrication tools for extremely efficient NLO devices

Examples of Applications of Highly Nonlinear Waveguides

Issues and Approaches

- Limited allowed pump tuning range
	- engineered QPM gratings
- Separation of output from input without spectral filtering
	- for operation near degeneracy
	- balanced optical mixer
- Limit on allowed pump modulation bandwidth
	- quasi-group velocity matching

Integrated structures for advanced devices

Narrow vs wide tuning

Tuning Curves Are Fourier Transforms

Solution to undepleted-pump SHG SVEA equation:

$$
E_{2\omega} \propto E_{\omega}^2 \int_0^L \chi^{(2)}(z) e^{i\Delta k(\omega)z} dz = E_{\omega}^2 \hat{\chi}^{(2)}[\Delta k(\omega)]
$$

Generated second harmonic proportional to Fourier Transform of $\chi^{(2)}(z)$

Generalize to Fourier synthesize "arbitrary" transfer function

Multiple Pump Channel Devices: Synthetic QPM Gratings

• TWM devices are broadband for signal, narrowband for pump – multiple pump wavelengths accomodated by engineering QPM grating

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, *Opt. Lett.* **24**, 1157-59 (August 1999).

1.5 μm Band "Broadcast" *λ*-converter

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, *Opt. Lett*. 24, 1157-59 (August 1999**). econfigurable Pump channel**

- Odd and even mode quasi-phase-matching

Optical Frequency Balanced Mixer

Mach Zender interferometer structure:

 π -phase shifted QPM allows independent bias of mixer output

- Broadband separation of inputs and output
- Requires twice as much pump power as standard device

$$
P_{out}=\frac{1}{4}\eta^2L^4P_p^2P_s
$$

Optical frequency balanced mixer: Implementation

Optical frequency balanced mixer

- 0.2 $0₀$ 0.1
- Proof of principle demonstration using 12 mm gratings
- Achieved >13dB of isolation from pump and signal
- Current devices: contrast >20dB

 0.2

 0.3

 0.4

 0.5

Separating modes: asymmetric Y-junction Even-odd mode interactions: asymmetric QPM gratings

Alternative for distinguishability and spatial separation:

Asymmetric Y-junctions: Mode filtering and Launching

J. R. Kurz, X. P. Xie, M. M. Fejer, Optics Letters, 27, 1445-47 (August 2002).

Can solve problems of distinguishability and spatial separation, enabling:

- spectral inversion without offset
- simultaneous bi-directional wavelength conversion
- degenerate difference-frequency mixing

Can be generalized to N-mode mixer:

Speed limits of PPLN devices due to GVM

Demonstration of quasi-GVM compensation devices

- (a): two pulses generated 6 ps apart (b)-(d): pulses move closer as delay increases
- (e): pulse envelopes overlap [Jie Huang, Xiu-Ping Xie]

Easy control of phase by temperature tuning: two pulses go between in phase and out of phase alternately in an 8º ^C cycle

Tight bends required to integrate multiple delay sections

Need to suppress radiation loss with more complex bend designs

Polarization Insensitive Converter

Power (dbm)

intrinsic insensitivity (Yoo et al)

Final topics: Pushing the Envelope

- • We have uniquely efficient and engineerable nonlinear optical platform
	- are there applications beyond telecom?
- •Quantum efficiencies > 99%
- •Single photon manipulations for quantum optics
- •Interactions with attojoule pulses

 \bullet Quadratic nonlinear interactions often in low-conversion limit

High Efficiency NLO Is Challenging (but Useful)

- • Difficult to push nonlinear interactions to high conversion
	- strong drive required by spatial/temporal averaging 75% energy efficiency \Rightarrow 99% peak efficiency 99% energy efficiency $\;\Rightarrow$ >99.99% peak
	- exacerbates narrowing of tuning curves small inhomogeneities cause backconversion
	- spatial distortions & "gain-induced diffraction": with extreme peak powers get quadratic solitons
- \bullet Waveguides have interesting properties
	- high efficiency: CW/quasi-CW operation
	- eigenmodes convert as entities: eliminates spatial variations
- • Waveguides present some challenges
	- strict homogeneity requirements to avoid backconversion

High Efficiency NLO Is Challenging (but Useful)

- • Difficult to push nonlinear interactions to high conversion
	- strong drive required by spatial/temporal averaging 75% energy efficiency \Rightarrow 99% peak efficiency 99% energy efficiency $\;\Rightarrow$ >99.99% peak
	- exacerbates narrowing of tuning curves small inhomogeneities cause backconversion
	- spatial distortions & "gain-induced diffraction": with extreme peak powers get quadratic solitons
- Waveguides have interesting properties
	- high efficiency: CW/quasi-CW operation
	- eigenmodes convert as entities: eliminates spatial variations
- Waveguides present some challenges – strict homogeneity requirements \Box (%)
	- to avoid backconversion

 ω

 2ω

 \bullet 99% depletion observed at input power of 900 mW

Into High-Gain Regime

- •Experiment done with longer sample
- • Parametric amplification of ASE from pump laser induces back conversion
	- precludes quantitative analysis

Photon Counting at 1.5 P **m**

 -15

 -20

- \bullet Photon counting at 1.5 μ m important for quantum information
	- InGaAs APDs: high dark count, low Q.E.
	- Si APDs: no response at 1.5 μ m
- •Efficient SFG converts 1.5 μ m photons to 720 nm
	- suitable for Si APD
	- photon statistics altered only if QE<100%

 $0 - 0.8$

- • Demonstrated w/fiber pigtail: Internal QE: >99%, External QE: 60%
- • Anticipate (AR coatings, etc):
	- Internal QE: >99%, External QE: >80%

- \bullet Dark counts: dominated by non-phasematched SHG of pump
	- $~\sim$ 100 dB filtering (LPF + prism) to get to \sim 200 cps

[C. Langrock, E. Diamanti]

•Easier (and more useful) to deplete SFG

$$
\frac{N_{\text{sum}}(L)}{N_{\text{sig}}(0)} = \cos^2\left(\sqrt{4\Gamma P_{\text{pump}}}\right)
$$

$$
\frac{N_{sig}(L)}{N_{sig}(0)} = \sin^2\left(\sqrt{4\Gamma P_{pump}}\right)
$$

- predict total conversion for 50 100 mW pump
- •Experiment: 5 cm PPLN waveguide

[C. Langrock, R. Roussev]

- • Autocorrelation is a common pulse measurement tool
	- $-$ measure 2 ω energy vs time delay
	- infer pulse duration
- • Requires a nonlinear process like SHG
	- makes measurement at low energies challenging
	- needs adequate spectral bandwidth to accommodate pulse spectrum
- • Combine two ideas
	- waveguide for high efficiency
	- chirped QPM grating to obtain bandwidth

Autocorrelation with 400 Photons

Summary

- •Materials essential for NLO devices
	- microstructured materials provide systematic solutions
	- best new material is often a better understood old material (like silicon in microelectronics)
- •Many useful device concepts can be borrowed from microwave world
- • Microstructured waveguides implementing QPM
	- careful design allows orders of magnitude improvement in performance
	- highly engineerable solutions for various signal processing functions classical and quantum optical
- • Higher levels of integration coming for multifunction devices
	- new materials may offer further qualitative improvements (e.g. OP-GaAs)
- • May be possible to use nanophotonic devices to implement similar functions

