

The Abdus Salam International Centre for Theoretical Physics

SMR: 1643/7

WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY

(7 - 18 February 2005)

"Biophotonics at the Nanoscale" - 1

presented by:

L. Novotny The Institute of Optics Rochester U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

NANOBIOPHOTONICS

Lukas Novotny The Institute of Optics, University of Rochester, Rochester, NY, 14627.

.. application of optical science and technology to the study of nanoscale biological processes.

Basic Sciences · · · Optics · · · Technical Sciences

Nanoscience · · · NANO-OPTICS · · · Nanotechnology

Nano-Optics is the study of optical phenomena and techniques near or beyond the diffraction limit.

NANO-OPTICS @ ROCHESTER

www.nano-optics.org

OPTICS - BIOMEDICAL ENGINEERING BUILDING PROJECT

PROTEINS WORKING IN SYNCHRONY

Cell signaling and coordination are true marvels of nature !

BIOLOGICAL BUILDING BLOCKS

Biology functions through highly coordinated and complex interactions among nanostructures. Biology is Nanobiotechnology !

From DNA to AMINOACIDS to PROTEINS

HOW TO MEASURE PROTEINS ?

10 mp

Freeze-fracture electron micrograph of the thylakoid membranes from the chloroplast of a plant cell. AFM topographs of purple membrane from Halobacterium salinarium.

A. Engel, MSB Biozentrum, Basel, Switzerland.

SPATIAL RESOLUTION VS.CHEMICAL INFORMATION

HOW TO MEASURE PROTEINS ?

DOES IT WORK ?

NEW GENERATION

NEAR-FIELD TWO-PHOTON EXCITED FLUORESCENCE

PHOTOSYNTHETIC MEMBRANE

NEAR-FIELD RAMAN SCATTERING ?

WHY RAMAN SCATTERING ?

Chemically specific ("fingerprint")

Intrinsic properties of molecular structures (no need for labels)

"No" photo-bleaching.

University of Rochester

Raman signals can be locally enhanced by up to 10^{14} (SERS).

LEARN WITH EFFICIENT MOLECULES ..

diameter: 0.7 - 2nm length: up to several 10 μm

- \rightarrow one dimensional systems
- well defined topography
- large σ_{Raman}
- resonance enhancement

NEAR-FIELD RAMAN SCATTERING

HIGH-RESOLUTION OPTICAL SPECTROSCOPY

NEAR-FIELD SIGNAL ENHANCEMENT

CHEMICAL SPECIFICITY

Topography

Raman scattering

PRL **90**, 95503 (2003)

LOCALIZATION OF DEFECTS AND DOPANTS

SO WHAT ABOUT PROTEINS ??

WHERE ARE THE MISSING **10** ORDERS OF MAGNITUDE?

DIFFERENT APPROACH

METAL TIP AS A LOCALIZED PHOTON SOURCE

LET'S BE REALISTIC ..

FLUORESCENT LABELING

TEXTBOOK (Cambridge Univ. Press)

PRINCIPLES OF NANO-OPTICS

Lukas Novotny

The Institute of Optics University of Rochester, Rochester, New York

Bert Hecht

Institute of Physics University of Basel, Basel, Switzerland

FLUORESCENT MOLECULES

EXCITATION/DETECTION OF SINGLE MOLECULES

REDUCING INTERACTION VOLUME

SINGLE MOLECULE DETECTION

EXAMPLE

Nile Blue molecules

fluorescence rate ~ excitation rate

contrast ~ $| \boldsymbol{\mu} \cdot \boldsymbol{E}(x,y;\boldsymbol{z}_{o})|^{2}$

FIELDS NEAR A STRONGLY FOCUSED BEAM ?!

$$\mathbf{E}(x) = \mathbf{E}_o e^{i k_x x} \longrightarrow \mathbf{E}(x,t) = \operatorname{Re} \left\{ \mathbf{E}(x) e^{-i \omega t} \right\}$$

$$\mathbf{E}(x, y, z) = \mathbf{E}_o e^{i (k_x x + k_y y + k_z z)} = \mathbf{E}_o e^{i \mathbf{k} \cdot \mathbf{r}}$$

$$k^2 = \frac{\omega^2}{c^2} = k_x^2 + k_y^2 + k_z^2$$

ANGULAR SPECTRUM REPRESENTATION

ANGULAR SPECTRUM REPRESENTATION

$$\hat{\mathbf{E}}(k_x, k_y; z) = \hat{\mathbf{E}}(k_x, k_y; 0) e^{\pm i k_z z}$$

$$k_z \equiv \sqrt{(k^2 - k_x^2 - k_y^2)}$$
 with $Im\{k_z\} \ge 0$

$$\mathbf{E}(x, y, z) = \iint_{-\infty}^{\infty} \hat{\mathbf{E}}(k_x, k_y; 0) e^{i \left[k_x x + k_y y \pm k_z z\right]} dk_x dk_y$$

Plane waves :	$\mathrm{e}^{i\left[k_x x + k_y y\right]} \mathrm{e}^{\pm i\left k_z\right z},$	$k_x^2 + k_y^2 \leq k^2$
Evanescent waves :	$\mathrm{e}^{i\left[k_xx+k_yy\right]}\mathrm{e}^{-\left k_z\right \left z\right },$	$k_x^2 + k_y^2 > k^2$

ANGULAR SPECTRUM REPRESENTATION

PARAXIAL APPROXIMATION / GAUSSIAN BEAMS

$$k_z = k \sqrt{1 - (k_x^2 + k_y^2)/k^2} \approx k - \frac{(k_x^2 + k_y^2)}{2k}$$

$$\mathbf{E}(x',y',0) = \mathbf{E}_o e^{-\frac{x'^2+y'^2}{w_o^2}} \longrightarrow \hat{\mathbf{E}}(k_x,k_y;0) = \mathbf{E}_o \frac{w_o^2}{4\pi} e^{-(k_x^2+k_y^2)\frac{w_o^2}{4}}$$

$$\mathbf{E}(x, y, z) = \mathbf{E}_o \frac{w_o^2}{4\pi} e^{ikz} \iint_{-\infty}^{\infty} e^{-(k_x^2 + k_y^2)(\frac{w_o^2}{4} + \frac{iz}{2k})} e^{i[k_x x + k_y y]} dk_x dk_y$$

PARAXIAL APPROXIMATION / GAUSSIAN BEAMS

$$\mathbf{E}(\rho, z) = \mathbf{E}_o \frac{w_o}{w(z)} e^{-\frac{\rho^2}{w^2(z)}} e^{i[kz - \eta(z) + k\rho^2/2R(z)]} \qquad z_o = \frac{k w_o^2}{2},$$

HIGHER-ORDER PARAXIAL BEAMS

E

FARFIELDS OF THE ANGULAR SPECTRUM

$$\mathbf{E}_{\infty}(s_x, s_y, s_z) = \lim_{\substack{kr \to \infty \\ (k_x^2 + k_y^2) \le k^2}} \iint_{\mathbf{E}} \hat{\mathbf{E}}(k_x, k_y; 0) \ \mathrm{e}^{i\,kr\left[\frac{k_x}{k}s_x + \frac{k_y}{k}s_y \pm \frac{k_z}{k}s_z\right]} \ dk_x \ dk_y$$

$$\mathbf{s}=(s_x,s_y,s_z)=(\frac{x}{r},\frac{y}{r},\frac{z}{r})$$

Method of stationary phase:

$$\mathbf{E}_{\infty}(s_x, s_y, s_z) = -2\pi i k \, s_z \, \hat{\mathbf{E}}(k s_x, k s_y; 0) \, \frac{\mathrm{e}^{i \, k r}}{r} \qquad \mathbf{s} = (s_x, s_y, s_z) = (\frac{k_x}{k}, \frac{k_y}{k}, \frac{k_z}{k})$$

ample:

$$\hat{\mathbf{E}}(k_x, k_y; 0) = \frac{\mathbf{E}_o}{4\pi^2} \int_{-L_y}^{+L_y} \int_{-L_x}^{+L_x} e^{-i[k_x x' + k_y y']} dx' dy'$$

$$= \mathbf{E}_o \frac{L_x L_y}{\pi^2} \frac{\sin(k_x L_x)}{k_x L_x} \frac{\sin(k_y L_y)}{k_y L_y},$$

ANGULAR SPECTRUM IN TERMS OF FARFIELD

$$\hat{\mathbf{E}}(k_x, k_y; 0) = \frac{ir e^{-ikr}}{2\pi k_z} \mathbf{E}_{\infty}(k_x, k_y)$$

$$\mathbf{E}(x, y, z) \ = \ \frac{i r \,\mathrm{e}^{-i \,k r}}{2 \pi} \iint_{(k_x^2 + k_y^2) \le k^2} \mathbf{E}_{\infty}(k_x, k_y) \ \mathrm{e}^{i [k_x x + k_y y \pm k_z z]} \ \frac{1}{k_z} \ dk_x \ dk_y$$

For $k_z \sim k$: Fourier Optics !!

REFRACTION AT LENS

$$h = f\sin(\theta)$$

$$\mathbf{E}_2| = |\mathbf{E}_1| \sqrt{\frac{n_1}{n_2}} \sqrt{\frac{\mu_2}{\mu_1}} \cos^{1/2}\theta$$

FOCUSING OF FIELDS

$$\mathbf{E}_{\infty} = \left[t^{s} \left[\mathbf{E}_{inc} \cdot \mathbf{n}_{\phi} \right] \mathbf{n}_{\phi} + t^{p} \left[\mathbf{E}_{inc} \cdot \mathbf{n}_{\rho} \right] \mathbf{n}_{\theta} \right] \sqrt{\frac{n_{1}}{n_{2}}} \left(\cos \theta \right)^{1/2}$$

EXPRESS IN TERMS OF ANGLES

$$\mathbf{n}_{\rho} = \cos \phi \, \mathbf{n}_{x} + \sin \phi \, \mathbf{n}_{y} ,$$

$$\mathbf{n}_{\phi} = -\sin \phi \, \mathbf{n}_{x} + \cos \phi \, \mathbf{n}_{y} ,$$

$$\mathbf{n}_{\theta} = \cos \theta \cos \phi \, \mathbf{n}_{x} + \cos \theta \sin \phi \, \mathbf{n}_{y} - \sin \theta \, \mathbf{n}_{z}$$

$$k_x = k \sin \theta \, \cos \phi, \quad k_y = k \sin \theta \, \sin \phi, \quad k_z = k \cos \theta \qquad \frac{1}{k_z} dk_x \, dk_y = k \, \sin \theta \, d\theta \, d\phi$$

$$x = \rho \cos \varphi, \qquad y = \rho \sin \varphi$$

$$\mathbf{E}(\rho,\varphi,z) = \frac{ikf \,\mathrm{e}^{-ikf}}{2\pi} \int_{0}^{\theta_{max}2\pi} \int_{0}^{\infty} \sum_{0}^{\mathbf{E}_{\infty}} (\theta,\phi) \,\mathrm{e}^{ikz\,\cos\theta} \,\mathrm{e}^{ik\rho\,\sin\theta\,\cos(\phi-\varphi)}\sin\theta\,d\phi\,d\theta$$

DEFINE INCIDENT FIELD

$$\mathbf{E}_{inc} = E_{inc} \mathbf{n}_x \qquad t^s_\theta = t^p_\theta = 1$$

 $\mathbf{E}_{\infty}(\theta,\phi) = E_{inc}(\theta,\phi) \left[\cos\phi \mathbf{n}_{\theta} - \sin\phi \mathbf{n}_{\phi}\right] \sqrt{n_1/n_2} \left(\cos\theta\right)^{1/2}$

$$= E_{inc}(\theta,\phi) \frac{1}{2} \begin{bmatrix} (1+\cos\theta) - (1-\cos\theta)\cos 2\phi \\ -(1-\cos\theta)\sin 2\phi \\ -2\cos\phi\sin\theta \end{bmatrix} \sqrt{\frac{n_1}{n_2}} (\cos\theta)^{1/2}$$

(0,0) mode :

$$E_{inc} = E_o e^{-(x_{\infty}^2 + y_{\infty}^2)/w_o^2} = E_o e^{-f^2 \sin^2 \theta / w_o^2}$$

INTEGRATE OVER $\boldsymbol{\varphi}$

$$\int_{0}^{2\pi} \cos n\phi \, \mathrm{e}^{ix \cos(\phi - \varphi)} \, d\phi = 2\pi (i^n) \, J_n(x) \, \cos n\varphi$$
$$\int_{0}^{2\pi} \sin n\phi \, \mathrm{e}^{ix \cos(\phi - \varphi)} \, d\phi = 2\pi (i^n) \, J_n(x) \, \sin n\varphi \, ,$$

SOLUTION

$$(0,0) \ mode:$$

$$\mathbf{E}(\rho,\varphi,z) = \frac{ikf}{2} \sqrt{\frac{n_1}{n_2}} E_o e^{-ikf} \begin{bmatrix} I_{00} + I_{02} \cos 2\varphi \\ I_{02} \sin 2\varphi \\ -2iI_{01} \cos \varphi \end{bmatrix}$$

$$\mathbf{H}(\rho,\varphi,z) = \frac{ikf}{2Z_{\mu\varepsilon}} \sqrt{\frac{n_1}{n_2}} E_o e^{-ikf} \begin{bmatrix} I_{02} \sin 2\varphi \\ I_{00} - I_{02} \cos 2\varphi \\ -2iI_{01} \sin \varphi \end{bmatrix}$$

$$\mathbf{Fields given by}$$
3 integrals:
$$I_{00} = \int_{0}^{\theta_{max}} f_w(\theta) (\cos \theta)^{1/2} \sin \theta (1 + \cos \theta) J_0(k\rho \sin \theta) e^{ikz \cos \theta} d\theta$$

$$I_{01} = \int_{0}^{\theta_{max}} f_w(\theta) (\cos \theta)^{1/2} \sin^2 \theta J_1(k\rho \sin \theta) e^{ikz \cos \theta} d\theta$$

$$I_{02} = \int_{0}^{\theta_{max}} f_w(\theta) (\cos \theta)^{1/2} \sin \theta (1 - \cos \theta) J_2(k\rho \sin \theta) e^{ikz \cos \theta} d\theta$$

FOCAL FIELDS

FOCAL FIELDS SAMPLED WITH SINGLE MOLECULES

λ -PHAGE DNA LABELED WITH YOYO-1

WEAKLY FOCUSED BEAMS

Focal plane (z=0):

$$I_{00} \approx \frac{2}{k\rho} \int_{0}^{k\rho\theta_{max}} x J_0(x) \, dx = 2\theta_{max}^2 \frac{J_1(k\rho\theta_{max})}{k\rho\theta_{max}}$$

$$\mathbf{E}\approx ikf\,\theta_{max}^2\,E_o\,\mathrm{e}^{-i\,kf}\,\frac{J_1(k\rho\theta_{max})}{k\rho\theta_{max}}\;\mathbf{n}_x$$

Not Gaussian !

FOCUSED RADIALLY POLARIZED BEAMS

FOCUSED RADIALLY POLARIZED BEAMS

FOCUSED RADIALLY POLARIZED BEAMS

WHAT ABOUT INTERFACE ?

Angular spectrum representation with Fresnel reflection / transmission coefficients.

EXAMPLE: LASER TWEEZERS

WHAT ABOUT EMISSION ?

Molecules radiate like oscillating dipoles !!

COUPLING OF EVANESCENT WAVES

FARFIELD SOLUTION

Exact solution = radiation from molecule and its image

RADIATION PATTERNS

DEMONSTRATION WITH SINGLE MOLECULES

(c)

(d)

0

2

4

University of Rochester

Data

Model

8

6

10

12

JOSA B 21, 1210 (2004)

14

Fit

SUMMARY

BIOPHYSICAL PROCESSES ARE VISUALIZED USING SINGLE MOLECULES AS PROBES

EXCITATION OF SINGLE MOLECULES

- Angular Spectrum Representation
- Application to Strongly Focused Laser Beams
- Experimental Mapping using Single Molecules as Probe Dipoles

DETECTION OF SINGLE MOLECULES

- Molecule Radiates like Oscillating Dipole
- Interface Perturbs Radiation Pattern
- Collection Optics needs to include Critical Angle