

The Abdus Salam
International Centre for Theoretical Physics

 SMR: 1643/6

WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY

 (7 - 18 February 2005)

"Optical Properties of Plasmonic Nanosystems"- III

presented by:

M. Stockman Georgia State University Atlanta U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Support:

Theory of Nanoplasmonics 3: Optical Properties of Plasmonic Nanosystems Mark I. Stockman

Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

LECTURE 3

Ultrafast and Quantum Nanoplasmonics

- 1. Introduction: Problem of nanoscale control of local optical fields
- 2. Coherent control using phase (temporal) degrees of freedom of ultrashort pulse in linear and nonlinear processes.
- 3. Two-pulse (interferometric) coherent control: full suppression or enhancement of near field hot spots for two-photon effects
- 4. Surface plasmon amplification by stimulated emission of radiation (SPASER)

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

PROBLEMS IN NANOOPTICS

Delivery of energy to nanoscale; Adiabatical conversion of propagating EM wave to local fields

Microscale

Generation of local fields on nanoscale: SPASER

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

COHERENT CONTROL OF THE NANOSCALE LOCALIZATION OF ULTRAFAST OPTICAL EXCITATION ENERGY

- 1. M. I. Stockman, S. V. Faleev, and D. J. Bergman, **Coherent Control of Femtosecond Energy Localization in** *Nanosystems*, Phys. Rev. Lett. **88,** 067402 (2002).
- M. I. Stockman, D. J. Bergman, and T. Kobayashi, *Coherent Control of Nanoscale Localization of Ultrafast Optical Excitation in Nanosystems*, Phys. Rev. B. **69**, 054202-1-10 (2004).

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Problem: The wavelength of the excitation radiation is orders of magnitude too large to control spatial distribution of local fields on nanoscale by focusing

Thus, optical radiation does not have spatial degrees of freedom on the nanoscale

However, this optical radiation does possess spectral (phase) degrees of freedom

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

•Femtosecond local fields on nanoscale:

$$
\varphi(\mathbf{r},t) = \varphi_0(\mathbf{r},t) - \int \varphi_0(\mathbf{r}',t') \nabla_{\mathbf{r}'}^2 G(\mathbf{r},\mathbf{r}';t-t') d^3 r' dt'
$$

Example to be considered: The exciting pulses are *z-*polarized, have Gaussian envelopes, and carry linear chirp,

$$
E_z^{(0)}(t) = \exp \left[i \omega_0 \left(1 + \alpha \frac{t - T/2}{T} \right) \left(t - T/2 \right) - \frac{3}{2} \left(\frac{t - T/2}{T} \right)^2 \right] + \text{c.c.}
$$

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

See also: J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, and F. Trager, *Ultrafast Dephasing of Surface Plasmon Excitation in Silver Nanoparticles: Influence of Particle Size, Shape, and Chemical Surrounding*, Phys. Rev. Lett. **89**, 257404 (2002).

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

RESULTS

zzThe nanosystems studied are an "engineered" V-shape and a random planar composite (RPC) , positioned in the plane. The material is silver; the spatial scale is 1-3 nm/grid unit.

Linear responses

Spatial Distribution: Local Fields in V-shape, Negative Chirp

Conclusion: There is a strong localization of the excitation energy at the tip of the nanostructure during a time interval on order of the pulse length

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Spatial Distribution: Local Fields in V-shape, Positive Chirp

Conclusion: Excitation energy is transferred between the tip and the opening of the nanostructure. No spatial concentration of energy takes place.

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Time-Averaged Responses

Local Optical Fields in Random Planar Composite at the Instants of their Maxima

Conclusion: The phase is a controlling factor in random systems as well

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Two-Photon Interferometric Coherent Control

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, in *Attosecond Kinematic Micrography of Surface Plasmon Dynamics*, Nature (2004 (submitted)). Delay

Local optical field intensity for a fractal cluster of gold for a 50 fs ultrashort exciting pulse (carrier wavelength of 1240 nm). Panels (a) and (b) are snapshots for observation times indicated in the figures, separated by 600 as. The data are adapted from M. I. Stockman, *Giant Attosecond Fluctuations of Local Optical Fields in Disordered Nanostructured Media*, Phys. Rev. B **62**, 10494-10497 (2000).

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Experiment: Distribution of the two-photon electron emission from rough silver surface. Frame are taken with 200 as periodicity in delay

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Theory: spatial distributions of two-photon excitation as a function of delay between the two excitation pulses

CONCLUSIONS

• Phase modulation of the excitation femtosecond pulse provides ^a functional degree of freedom necessary to control the spatial distribution of the local optical fields in nanosystems on the femtosecond temporal and nanometer spatial scale.

• Both the spectral composition and the phase modulation determine femtosecond-nanometer dynamics of local fields.

• For nonlinear photoprocesses, time-integral spatial distribution is controlled by both the pulse spectrum and its phase modulation. Twophoton processes are locally enhanced at the optimum by a factor of up to $10^7\hspace{-0.5pt}.$

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Quantum Nanoplasmonics: Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER)

D. J. Bergman and M. I. Stockman, *Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems*, Phys. Rev. Lett. **90**, 027402-1-4 (2003).

Acknowledgement: Victor I. Klimov (LANL) and John E. Sipe (U. Toronto)

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

THEORETICAL APPROACH

Because the characteristic size of a spaser is much smaller than the wavelength, the quasistatic approximation in field equations is valid. Surface plasmon field equations and boundary conditions in a material*i*ndependent form, where sare eigenvalues and and are eigenfunctions:

$$
\frac{\partial}{\partial \mathbf{r}} \theta(\mathbf{r}) \frac{\partial}{\partial \mathbf{r}} \varphi_n(\mathbf{r}) = s_n \frac{\partial^2}{\partial \mathbf{r}^2} \varphi_n(\mathbf{r}),
$$
\nwhere $\theta(\mathbf{r} \in metal) = 1$ and $\theta(\mathbf{r} \in elsewhere) = 0$;
\n $\varphi_n(x, y, 0) = \varphi_n(x, y, L_z) = 0$, and
\n $\frac{\partial}{\partial x} \varphi_n(x, y, z) \Big|_{x=0, L_x} = \frac{\partial}{\partial y} \varphi_n(x, y, z) \Big|_{y=0, L_y} = 0.$

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Spectral parameter: $s(\omega) = [1 - \varepsilon(\omega)/\varepsilon_h]^{-1}$

Frequency ω_n *and decay rate* γ_n *of surface plasmons:*

$$
\text{Re}\big[s(\omega_n)\big] = s_n \,, \ \gamma_n = \frac{\text{Im}\big[s(\omega_n)\big]}{s'_n}, \text{ where } s'_n = \frac{d \text{Re}\big[s(\omega_n)\big]}{d \omega_n}
$$

Quasielectrostatic Hamiltonian of an inhomogeneous dispersive nanosystem:

$$
H = \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{d\big[\omega \, \varepsilon(\mathbf{r}, \omega)\big]}{d\omega} \mathbf{E}(\mathbf{r}, \omega) \mathbf{E}^+(\mathbf{r}, \omega) \frac{d\omega}{2\pi} d^3r
$$

where is $\mathbf{E}(\mathbf{r}, \omega) = -\nabla \phi(\mathbf{r}, \omega)$ the electric field operator.

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Quantized potential operator as an expansion over surface plasmons:

$$
\hat{\phi}(\mathbf{r},t) = \sum_{n} \sqrt{\frac{2\pi\hbar s_n}{\varepsilon_h}} \varphi_n(\mathbf{r}) e^{-\gamma_n t} \left[a_n e^{-i\omega_n t} + a_n^+ e^{i\omega_n t} \right]
$$

where a_n and are the surface plasmon creation and annihilation operators. With this, the Hamiltonian becomes $a^+_{\vec{n}}$ = ∑ $\left(\right)$ +) + *n* $H = \sum_{n} \hbar \omega_n \left(a_n^{\top} a_n + \frac{1}{2} \right)$ ω $\mathbf 1$ \hbar

The interaction Hamiltonian of the surface plasmons and two-level systems (quantum dots) of the active medium:

$$
H' = \sum_{a} \mathbf{d}^{(a)} \nabla \hat{\phi}(\mathbf{r}_a, t)
$$

Using the perturbation theory, kinetic equation for the population number of surface plasmons in an *n-*th mode is: *dN*

$$
\frac{dN_n}{dt} = \left(A_n - \gamma_n\right)N_n + B_n
$$

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

The Einstein stimulated emission coefficient is

$$
A_n = \frac{4\pi}{3\hbar} \frac{s_n |\mathbf{d}_{10}|^2 p_n q_n}{\varepsilon_h s_n' \gamma_n}
$$

Here p_n is the spatial overlap factor and q_n is the spectral overlap factor between the eigenmode intensity and the population inversion,

$$
p_n = \int \left[\nabla \varphi_n(\mathbf{r})\right]^2 \left[\rho_1(\mathbf{r}) - \rho_0(\mathbf{r})\right] d^3 r, \ q_n = \int F(\omega) \left[1 + (\omega - \omega_n)^2 \gamma_n^2 d\omega\right]
$$

Spaser gain $\alpha_n = \frac{A_n - \gamma_n}{\gamma_n}$

shows how many times faster the surface plasmons are born by the stimulated emission than they decay.

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

The local RMS field produced by spaser: is calculated as: ⎟ ⎠ $\left(N_{n}+\frac{1}{2}\right)$ ⎝ $\Big($ $= E_{n}(\mathbf{r})|N_{n} +$ 1/ 2 2 $\mathbf{r}(\mathbf{r}) = E_n(\mathbf{r}) \left(N_n + \frac{1}{2} \right)$ $E(\mathbf{r}) = E_{\mu}(\mathbf{r})|N$

$$
E(\mathbf{r}) = \left\langle \left[\nabla \phi(\mathbf{r}) \right]^2 \right\rangle^{1/2}
$$

, where

$$
E_n(\mathbf{r}) = \left\{ \frac{4\pi\hbar s_n}{\varepsilon_n s'_n} \left\langle \left[\nabla \varphi_n(\mathbf{r}) \right]^2 \right\rangle \right\}
$$

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

z

RESULTS

The resonant nanoparticle is an "engineered" V-shape. The material is silver; the spatial scale is 2-5 nm/grid unit.

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Calculated gain for thin (three monolayers of quantum dots) active medium

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu

Eigenmodes with highest yields for the spectral maximum at 1.2 eV

CONCLUSIONS

•We have proposed the SPASER: effect and prospective quantumnanoplasmonic device.

•Spaser is not a laser: it does not emit light waves but builds up macroscopic numbers of coherent SPs in individual eigenmodes of a nanosystem.

•It is possible to generate dark SPs that do not couple to far-zone fields.

•Spaser generates intense, ultrafast, nanoscale-localized opticalfrequency local fields.

•There exist many possibilities for prospective applications in nanoscience and nanotechnology

2/20/2005 Web: http://www.phy-astr.gsu.edu/stockman E-mail: mstockman@gsu.edu