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The geotechnical scale

The geotechnical scale

Example of two strong motion arrays at Taiwan:
• SMART 1
• Lotung LSST

Lotung site profiles
• Geologic profile
• Geotechnical profile

The geotechnical scale is in the range of ten(s)
to hundred(s) meters
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Figure 1-1. Locations of SMART 1 and Lotting LSST strong motion arrays.
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Figure 3-1. Location of Surface and Downhole Instrumentation, Lotung Experiment Site
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0.3m x 0.3m -

Figure 1-1. Cross-Section of the I/4-Scale Containment Model
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Table 4-1.

LOTUNG LSST EVENTS (1985-1986)

Dist1 Depth
LSSTf SMART* Date (km) (km)

1 36 9/20/85 46 4

2 37 10/26/85 29 1

3 38 11/07/85 81 79

4 39 1/16/86 26 10

5 - 3/29/86 13 10

6 - 4/08/86 33 11

7 40 5/20/86 71 16

8 41 5/20/86 72 22

9 - 7/11/86 5 1

10 - 7/16/86 6 1

11 42 7/17/86 . 6 2

12 43 7/30/86 4 2

13* - 7/30/86 5

14 44 7/30/86 5 2

15* - 8/05/86 5

16 45 11/14/86 68 7

17* - U/14/86 80

18 - 11/15/86
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Hypocenter and M l from Inst of Earth Sciences, Academia Sinica, Taipei

Ms and m, from ISC orUSGS PDE.
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37

3.7

4.1
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4.1
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1 Distance is measured from the centroid of the aftershock zone for large events and from

the hypocenter for small events.
1 Azimuth of the hypocenter from the LSST array.

' M is defined as Ms for M5>6 and m, otherwise. If m. is not available, then m, is

estimated from ML.

* Distance is estimated from the S-Ptime, azimuth s estimated from the F-K spectra.

|
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Coherency
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Figure 5-4. Comparison of h
SMART 1 array.
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The geotechnical scale

site scale

Typically
vn<vn+1 z

front wave

Conventional (and questionable) assumption:
vertically propagating S and P waves

Site investigation
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Site investigation
Hualien site investigation, Taiwan (China)

• Overview of the site
* Investigation techniques

Huanen site
investigation
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Hualien site investigation

Cross hole logging, March 1993

e .. ' [•

Seismograph

Centre Pine

, . " - - - " • " " " " I • " "

. - . - • • ; • • • . •

%$?:

Hualien site investigation

Down hole logging

?M^>--I . . . • '

[Down-Hole Logging hMar.,i993)i3)g
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Hualien site investigation

line of large penetration test

Micro Computer
(Stress-strain' Cyclic loading

...-Load ceil

^Pressure cell
Accelerometer
Specimen

Non-Contact type
displacement sense

Schematic view of measuring system of
cyclic triaxial apparatus for specimens
of diameter 30cm

Hualien site investigation

Large size sampling
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Hualien site
investigation

Evaporated Nitrogen Gas .'

LHZ (Liquefied' Nitrogen-G&s) .

•verburden pressure(&.24kgf/cm^ ,

.eel plate
Embedded sand

.—5.0m

injection pipe

n
inner pipe for freezing
(«102)

.Outer pipe for f reeing

Frozen zone

Freezing
sampling
performed at
GL - 5m after
excavation

Site investigation - Sources of data

IAEA Safety Guide

TECHNIQUES FOR GEOPHYSICAL INVESTIGATIONS

Type of test

Cross hole
seismic test

Nakamura
method

Microgravimetry

Parameter measured

Dynamic elastic
properties

Low level (ambient
noise) vibrations

Acceleration due to
gravity

Types of problems

Site categorization,
soil-structure
interaction

Site categorization,
soil-structure
interaction

Complex subsurface
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Site investigation - Sources of data

Nakamura method,
Costal Plain, Israel, 2002

frequency (Hz)
3 5

Frequency (Hz)

Site investigation - Sources of data

IAEA Safety Guide

TECHNIQUES FOR GEOTECHNICAL INVESTIGATIONS
Type of test

Flat jack test

Pressure
meter test

Dynamic
penetrometer
test

Vane shear
test

Type of
materials

Rock

Clay, sand,
gravel, rock

Clay, sand,
gravel

Soft clay

Parameter measured

In situ normal stress

Elastic modulus;
compressibility

Cone resistance;
relative density

Shear strength

Types of
problems

Deformability

Settlement;
bearing capacity

Liquefaction

Bearing capacity,
slope stability
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Site investigation

Pressuremetre

&**

- Sources

m - * -
m \m •
^ ^ ^

of data

Pressure and volume
monitoring

Monitoring
/cell

/

Site investigation - Sources of data

Vane test
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Site investigation - Sources of data
IAEA Safety Guide

TECHNIQUES OF LABORATORY INVESTIGATION

Type of test

Atterberg limits
(clayed soils)

Proctor test,
ASTM test

Oedometer

Shear test box,
triaxial tests

Cyclic triaxial
tests,
resonant column

Parameter measured

Water content (through liquidity
and plasticity indexes)

Humid and dry densities,
water content, relative density.

Oedometric, Young's modulus,
consolidation coefficient

E, v, <(>, under drained and
undrained conditions

Dynamic Young's modulus,
Poisson ratio, internal damping,
pore pressure

Purpose

Compressibility and
plasticity

Settlement,
consolidation,
bearing capacity

Settlement,
consolidation

Settlement,
bearing capacity

Site categorization,
SSI,
liquefaction

Soil profile

IAEA/ICTP Workshop - February 2005 14



Soil profile, description

Description of a profile
• Thickness and variation of layers
• Nature, type of materials (sand, clay...)
• Ground water regime
• Body waves profile
• G-Y curves
• Relative density
• Cyclic shear strength
• Stress history of the site: OCR
• Index of plasticity

Soil profile, G-y curves

What is a G-y curve ?

Soil

shear strains

displacements

large strains

Rock S Wave

Constitutive relationship: x = G y . For low y: G=G

G decreases vs y, damping increases.
max

IAEA/ICTP Workshop - February 2005 15



Soil profile, G-y curves

Typical C-Y (day) and r\ - y (sand) curves

• Hard

B Mols
• Sllrt
* Dono
T Horcl

: [t963]
ch, HDII ond ftichOf 1 (1966
iSilo, Kishldo ond Kyo(l96?l

on (1969)

So ond ToSio o (1970)

/ _

^ ^

X •''''
/

i

Shear Strain, percent

Soil profile, examples

Examples of soil profiles
• Narimasu site, Japan
• Lotung site, Taiwan (China)
• Some NPP sites in France
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Soil profile, examples
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Soil profile, examples

Lotung LSST site, Taiwan, China (1)
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Biowcount From Standard Penetration Test

25 500 25 500 25 500 25 50 0 25 SOlO 25 50 0 25 50 0

WECC Field Program

Figure 7-3

Blowcounts Recorded during Standard Penetration Tests at Lotung Site
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SOIL PROFILE

Figure 7-6

Tip Resistance, Friction Ratio, and Estimated Soil Profile of Test No. 2.
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Soil profile, examples

NPP sites in France, soft site
Vltesses des ondes de clsaillement (Vs)
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Soil profile, examples

NPP sites in France, complex soft site
Vitesses des ondes de clsaillement (Vs)

[] moyenne harmoniqi

50 100 150 200 250 300 350 400 450 500

Soil profile, examples

NPP sites in France, medium site
Vitesses des ondes de ctsaillement (Vs)

[] moyenne harmoniqi

900 1000 1100 1200 1300
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-A—TraietN-S(E1-R2)

IAEA/ICTP Workshop - February 2005 22



Soil profile, examples

NPP sites in France, stiff site
Vitesses des ondes de cisaillement (Vs)

Soil profile, dealing with uncertainties (1)

IAEA Safety Guide:

Uncertainties in the mechanical properties of the
site materials should be taken into account
through parametric studies , at least on the
shear modulus value.

Between (best estimate value) x (1+CV)
and (best estimate value) / (1+CV)

The minimum value of Cw is 0.5
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Soil profile, dealing with uncertainties (2)

IAEA Safety Guide:

Even though conceptually the profile is unique to
a particular site, various related design profiles
for different purposes should be adopted to
allow for different hypotheses in the analysis.

A given soil profile cannot be assumed without
an assessment to be conservative for all the
items under consideration; that is, a
conservative profile for deconvolution may not
be conservative for the site response analysis.

Site scale effects

IAEA/ICTP Workshop - February 2005 24



Site scale effects, reduction in depth

Analytical approach of a simple case

At
t V0(t)

H
Deconvolution

VH(t) = 1/2 [V0(t-At) + V0(t+At)]

Method of characteristics

Site scale effects, reduction in depth

Narimasu
site, Japan
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Site scale effects, filtering and resonance

* Analytical approach of simple cases

Visco-elastic layer on a rigid base

Rock

B

H

A
Transfer function

l
D(B)=D(A) H

cos co—
c.

Site scale effects, filtering and resonance

Elastic layer on an elastic half-space

H C =

P2>C2

Amplification factor

P2C2

(OH
cos C2sin

COH

1/C values around 5 are usual;
in Mexico city 1/C is around 20
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Site scale effects, filtering and resonance

* Feedback experience

• the case of Mexico City
• two earthquakes at San Francisco
• the Kobe earthquake

Lessons
* filtering effect is not only site related
• filtering effect is input level dependent

Example of Mexico

jj -

GRBFTCfl CE TRS3 3RCHIVCS OS aCtLSSflCTCN (noIs)
scT'asaaisfiu.T scnssasiaRv.T 3 SCTISSMISST.T

GRC-n[CH G^O-ntCW GSO-fl[CHntCH
13:12=43

I
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• Example San Francisco

Alexander Building

Southern Pacific B.

Rincon Hill

Oakland City Hall

|||i||||^|y^^|i^|i:.-^.-:;;:;:?i

Silt argileux
+ Sable (45 m)

Argile molle

Rocher

Argile, Sable (30 m)
+ Argile raide (270 m)

: -.-; i-:,;Acce1SratiSrt^max:imale--du-isol: • • : •'•:

0.07

/~ 0.05

V 0.10

0.04

0.17

0.20 " \

0.09 , /

0.26

Example Kobe aftershock

Amplification factors during the main shock were considerably lower
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Spatial variability

Spatial variability

• Soil variability

Observing soil
variability

Variability of the
thickness of a chalk
layer on a NPP site

54.5 0.4 58.5

(Centimeter)
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Spatial variability

Modelling soil
variability

Vs (x, y, z) = Vs+o Vg f (x, y, z)

.X y z .
Pvs = e x p - ( — + — + —)

V V 7
A 0 ^0 ^0

Orders of magnitude are in
decametres for x0 and y 0 , in
metres for z0.

Spatial variability

•Seismic motion variability,

Observing and modelling at Lotung site
FA1-5
- T » DHB

30.48m

Arm 1

Boundary of Backfill

Arm 3

I Triaxlal acceloromoters
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Spatial variability

Seismic motion
variability at
Lotung site,

Quasi isotropy of
the ground motion

Spatial variability

Seismic motion variability at Lotung site

FA1-5
DHB

The seismic motion is modelled
as a travelling wave:

I Trtaxlal accelerometers
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Spatial variability

Seismic motion variability at Lotung site

FA1-5
- ! - • DHB

The seismic motion is modelled
as a "noise" described by its
autocorrelation function:
r(u,T) = a2 exp(-u/u0) exp(-r/x0)

Boundary of Backfill

l Trlaxial accelerometers

Spatial variability

Seismic motion variability at Lotung site

FA1-5

30.48m

21 couples

DHB

Arm 1
of stations

- Boundary of Backfill

i Triaxlal accelerometers
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Spatial variability

Seismic motion variability at Lotung site
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Event 06 , pga = 0.03g : no travelling wave effect

Spatial variability
Seismic motion variability at Lotung site
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Event 16 , pga = 0.16g : travelling wave + noise effect
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Spatial variability

Modelling seismic motion variability at Lotung site

Summary of the scientific findings

For low level input motions, the noise model is
appropriate. No wave effect was identified.

For the high level motions, a combination of travelling
wave and noise models is appropriate.

Conclusion:

The model of travelling wave is not sufficient to model
the variability of ground motion on a soft site

Conduct of geotechnical studies
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Conduct of geotechnical studies

• Types of sites as per the IAEA Safety Guide

Type 1

Vs>1100m/s

X
Type 2

1100m/s>Vs>300m/s

Type 3

300m/s > Vs

Assessment of the response of the
Site. Deconvolution

X Site specific
response spectra

Liquefaction
assessment

Vs is measured just below the raft and increases with depth

Conduct of geotechnical studies

The message of the IAEA Safety Guide for
Type3 sites:

Do not rely on attenuation relationships for
such very soft sites. The seismic input motion
should be estimated at a Typei (possibly
Type2) outcrop and site specific response
spectra should be computed.
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Conduct of geotechnical studies

input from
seismological analysis

1

no dec

\ Type 3

7

output:
site specific response
spectra

non linear
constructive law

/

/

/ ,

Type 2 /

deconvolution /

Conduct of geotechnical studies

Input Motion

Dynamic response
of the profile

-Site spectra
•Deconvolution
-Other outputs

Soil Data

Modelling of
the profile

Stresses
and strains

Liquefaction
potential

Other post
treatments
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Conduct of geotechnical studies

Cyclic Strain

Y<YS

Ys<Y<Yv

Yv<Y

Behaviour

practically linear

elastic non-linear
plastic without
degration

elasto - plastic with
degradation

Type of Analysis

linear

equivalent linear

non - linear

V " 6 " 5

Ys = 5 10 4 to 5 103

Yv= 10 to 10

d e p e n d i n g o n the
nature of the soil

Conduct of geotechnical studies

Types of soil constitutive laws

0 -
1.0L-
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Conduct of geotechnical studies

Linear equivalent profile

Shear wave velocity

Density

Material damping

Gmax(z), po (z) , Tlo(z)

Input motion Shear strain Y ( z > t ) G(z), po(z), T)(z)

Y „ (eq

I
G - y and r| — y curves

Summary of the Presentation

The geotechnical scale is around ten(s) to
hundred(s) metres.

At this scale uncertainties in mechanical
characteristics are significant.

The variability of soil characteristics and the
variability of seismic ground motion at the
geometric scale should be accounted for.

Geotechnical studies usually deal with non linear
behaviour; however the use of linear equivalent
models is generally possible, to the extent it is
carried out by experts in this field.
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