



United Nations Educational, Scientific and Cultural Organization



H4.SMR/1645-12

## "2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard"

14 - 25 February 2005

# Geotechnical database - Site specific soil data - Uncertainties

P. Labbe'

EDF, SEPTEN France

## IAEA/ICTP Workshop on Earthquake Engineering for Nuclear Facilities - Uncertainties in Seismic Hazard Assessment

## "Geotechnical database – Site specific soil data - Uncertainties"

Trieste, Italy, 14 – 25 February 2005 **Unit 13 - Pierre Labbé** 

## **Contents of the Presentation**

Introduction : The geotechnical scale

- Site investigations
- Soil profiles
- · Site scale effects on seismic motion
- Spatial variability
- Conduct of geotechnical studies



# The geotechnical scale Example of two strong motion arrays at Taiwan: • SMART 1 • Lotung LSST Lotung site profiles • Geologic profile • Geotechnical profile







|                                                                                          |                                                   |                                                                                               |                                                                                                          |                                                                |                                                         | (                              |                                 |                                   |                                           |         |     |
|------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------|---------------------------------|-----------------------------------|-------------------------------------------|---------|-----|
| LSS                                                                                      | Т# 3                                              | SMART#                                                                                        | Date                                                                                                     | Dist <sup>i</sup><br>(km)                                      | Depth<br>(km)                                           | Az <sup>2</sup>                | ML                              | M <sub>s</sub>                    | m,                                        | M³      |     |
|                                                                                          | 1                                                 | 36                                                                                            | 9/20/85                                                                                                  | 46                                                             | 4                                                       | 107                            | 6.3                             | 5.1                               | 5.3                                       | 5.3     |     |
|                                                                                          | 2                                                 | 37                                                                                            | 10/26/85                                                                                                 | 29                                                             | 1                                                       | 165                            | 5.3                             | - 1                               | 4.6                                       | 4.6     |     |
|                                                                                          | 3                                                 | 38                                                                                            | 11/07/85                                                                                                 | 81                                                             | 79                                                      | 30                             | 5.5                             | -                                 | 4.7                                       | 4.7     |     |
|                                                                                          | 4                                                 | 39                                                                                            | 1/16/86                                                                                                  | 26                                                             | 10                                                      | 61                             | 6.5                             | 6.0                               | 5.4                                       | 6.0     |     |
|                                                                                          | 5                                                 |                                                                                               | 3/29/86                                                                                                  | 13                                                             | 10                                                      | 159                            | 4.7                             |                                   | -                                         | 3.9     |     |
|                                                                                          | 6                                                 | -                                                                                             | 4/08/86                                                                                                  | 33                                                             | .11                                                     | 174                            | 5.4                             | •                                 | 4.3                                       | 4.3     |     |
|                                                                                          | 7                                                 | 40                                                                                            | 5/20/86                                                                                                  | 71                                                             | 16                                                      | 195                            | 6.5                             | 6.4                               | б.1                                       | 6.4     |     |
|                                                                                          | 8                                                 | 41                                                                                            | 5/20/86                                                                                                  | 72                                                             | 22                                                      | 192                            | 6.2                             | -                                 | 5.5                                       | 5.5     |     |
|                                                                                          | 9                                                 |                                                                                               | 7/11/86                                                                                                  | 5                                                              | 1                                                       | 146                            | 4.5                             | •                                 | -                                         | 3.7     |     |
| 1                                                                                        | 0                                                 | -                                                                                             | 7/16/86                                                                                                  | 6                                                              | 1                                                       | 162                            | 4.5                             | •                                 | -1                                        | 3.7     |     |
| 1                                                                                        | 1                                                 | 42                                                                                            | 7/17/86                                                                                                  | . 6                                                            | 2                                                       | 90                             | 5.0                             | -                                 | 4.1                                       | 4.1     | •   |
| 1                                                                                        | 2                                                 | 43                                                                                            | 7/30/86                                                                                                  | 4                                                              | 2                                                       | 131                            | 6.2                             | 5.6                               | 5.6                                       | 5.6     |     |
| 1                                                                                        | 3*                                                | -                                                                                             | 7/30/86                                                                                                  | 5                                                              | 1. se 🗧                                                 | 90                             | -                               | ·-                                | -                                         |         |     |
| - C - 1                                                                                  | 4                                                 | 44                                                                                            | 7/30/86                                                                                                  | .5                                                             | 2                                                       | 119                            | 4.9                             | •                                 | -                                         | 4.1     | 1.5 |
|                                                                                          | 5*                                                | -                                                                                             | 8/05/86                                                                                                  | 5                                                              | 1 1 1 <b>4</b>                                          | 120                            | -                               | -                                 | -                                         |         |     |
|                                                                                          | 6                                                 | 45                                                                                            | 11/14/86                                                                                                 | 68                                                             | 7                                                       | 174                            | 7.0                             | 7.8                               | 6.3                                       | 7.8     |     |
|                                                                                          | 7*                                                | -                                                                                             | 11/14/86                                                                                                 | 80                                                             |                                                         | 180                            |                                 | 6.3                               | 6.1                                       | 6.3     |     |
|                                                                                          | 18                                                | -                                                                                             | 11/15/86                                                                                                 |                                                                |                                                         |                                |                                 | , . <b>.</b> .                    | 5.3                                       | 5.3     |     |
| Hyj<br>M <sub>s</sub><br><sup>1</sup> Di<br>th<br><sup>2</sup> A<br><sup>3</sup> M<br>es | and r<br>istand<br>hyp<br>zimut<br>is de<br>timat | ter and M<br>n from IS<br>c is measu<br>ocenter for<br>h of the hy<br>fined as M<br>ed from M | from Inst. of<br>C or USGS F<br>ared from the<br>r small events<br>pocenter fro<br>$I_s$ for $M_s > 6$ a | of Earth S<br>PDE.<br>centroid<br>s.<br>m the LS<br>und m, oth | ciences, Ad<br>of the after<br>ST array.<br>terwise. If | rshock<br>m <sub>b</sub> is no | Sinica,<br>zone fo<br>ot avail: | Taipei,<br>r large e<br>able, the | Taiwan<br>vents ar<br>n m <sub>b</sub> is | nd from |     |













# <section-header><section-header>













| Si | te investiga               | ation – Sources of data              |                                                       |
|----|----------------------------|--------------------------------------|-------------------------------------------------------|
|    |                            |                                      | IAEA Safety Guide                                     |
| ΤE | CHNIQUES FOI               | R GEOPHYSICAL IN                     | IVESTIGATIONS                                         |
|    | Type of test               | Parameter measured                   | Types of problems                                     |
|    | Cross hole<br>seismic test | Dynamic elastic<br>properties        | Site categorization,<br>soil–structure<br>interaction |
|    | Nakamura<br>method         | Low level (ambient noise) vibrations | Site categorization,<br>soil–structure<br>interaction |
|    | Microgravimetry            | Acceleration due to gravity          | Complex subsurface                                    |
|    |                            | ·                                    |                                                       |



|                                 |                             | IA                                   | EA Safety Gui                     |
|---------------------------------|-----------------------------|--------------------------------------|-----------------------------------|
| CHNIQUES                        | FOR GEO                     | TECHNICAL INVE                       | STIGATIONS                        |
| Type of test                    | Type of<br>materials        | Parameter measured                   | Types of<br>problems              |
| Flat jack test                  | Rock                        | In situ normal stress                | Deformability                     |
| Pressure<br>meter test          | Clay, sand,<br>gravel, rock | Elastic modulus;<br>compressibility  | Settlement;<br>bearing capacity   |
| Dynamic<br>penetrometer<br>test | Clay, sand,<br>gravel       | Cone resistance;<br>relative density | Liquefaction                      |
| Vane shear<br>test              | Soft clay                   | Shear strength                       | Bearing capacity, slope stability |





| ite investiç                                 | gation – Sources of                                                           | data                                              |
|----------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|
|                                              | IA                                                                            | AEA Safety Guide                                  |
|                                              | F LABORATORY INVEST                                                           | IGATION                                           |
| Type of test                                 | Parameter measured                                                            | Purpose                                           |
| Atterberg limits<br>(clayed soils)           | Water content (through liquidity and plasticity indexes)                      | Compressibility and<br>plasticity                 |
| Proctor test,<br>ASTM test                   | Humid and dry densities,<br>water content, relative density.                  | Settlement,<br>consolidation,<br>bearing capacity |
| Oedometer                                    | Oedometric, Young's modulus, consolidation coefficient                        | Settlement,<br>consolidation                      |
| Shear test box,<br>triaxial tests            | E, $v$ , $\phi$ , under drained and undrained conditions                      | Settlement,<br>bearing capacity                   |
| Cyclic triaxial<br>tests,<br>resonant column | Dynamic Young's modulus,<br>Poisson ratio, internal damping,<br>pore pressure | Site categorization,<br>SSI,<br>liquefaction      |



## Soil profile, description

## Description of a profile

- Thickness and variation of layers
- Nature, type of materials (sand, clay...)
- Ground water regime
- · Body waves profile
- G-γ curves
- Relative density
- Cyclic shear strength
- Stress history of the site: OCR
- Index of plasticity



































Soil profile, dealing with uncertainties (2)

IAEA Safety Guide:

Even though conceptually the profile is unique to a particular site, various related design profiles for different purposes should be adopted to allow for different hypotheses in the analysis.

A given soil profile cannot be assumed without an assessment to be conservative for all the items under consideration; that is, a conservative profile for deconvolution may not be conservative for the site response analysis.















| Station             | Stratigraphie                                  | Accélération ma<br>1957 | ximale du sol<br>1989 |
|---------------------|------------------------------------------------|-------------------------|-----------------------|
| Alexander Building  | Silt argileux<br>+ Sable (45 m)                | 0.07                    | 0.17                  |
| Southern Pacific B. | Argile molle                                   | 0.05                    | 0.20                  |
| Rincon Hill         | Rocher                                         | 0.10                    | 0.09                  |
| Oakland City Hall   | Argile, Sable (30 m)<br>+ Argile raide (270 m) | 0.04                    | 0.26                  |























## **Spatial variability**

Modelling seismic motion variability at Lotung site

Summary of the scientific findings

For low level input motions, the noise model is appropriate. No wave effect was identified.

For the high level motions, a combination of travelling wave and noise models is appropriate.

Conclusion:

The model of travelling wave is not sufficient to model the variability of ground motion on a soft site











| Cyclic Strain                                  | Behaviour                                          | Type of Analysis  |  |  |
|------------------------------------------------|----------------------------------------------------|-------------------|--|--|
| $\gamma < \gamma_s$                            | practically linear                                 | linear            |  |  |
| $\gamma_{\rm s}$ < $\gamma$ < $\gamma_{\rm v}$ | elastic non-linear<br>plastic without<br>degration | equivalent linear |  |  |
| γ <sub>v</sub> < γ                             | elasto - plastic with<br>degradation               | non - linear      |  |  |







### References

- Z. Zembaty, A. Castellani and G. Boffi, 'Spectral analysis of the rotational component of seismic ground motion', Probabilistic Engineering Mechanics, 8, 5-14, (1993).
- W. K. Tso and T. I. Hsu, 'Torsional spectrum for earthquake motions', Earthquake Engineering and Structural Dynamics, 6, 375-382, (1978).
- C. H. Loh, J. Penzien and Y. B. Tsai, 'Engineering analysis of SMART 1 array accelerograms', Earthquake Eng. & Structural Dynamics, 10, 575-591. (1982).
- N. A. Abrahamson, 'Estimation of seismic wave coherency and rupture velocity using the SMART-1 strong motion array recordings', EERC Report No. EERC/UCB/85-02, Earthquake Engineering Research Center, University of California, (1985).
- A. Der Kiureghian, 'A coherency model for spatially varying ground motions', Earthquake Engineering and Structural Dynamics, 25, 99-111, (1996).
- N. A. Abrahamson, J. F. Shneider and J. C. Stepp, 'Empirical spatial coherency function for applications to SSI analysis', Earthquake Spectra, 7, 1-27, (1991).
- D. G. Anderson and Y. K. Tang, 'Summary of soil characterisation program for the Lotung large-scale seismic experiment', Proceedings: Workshop on Lotung largescale seismic experiment, EPRI, Palo Alto, California, (1987).
- C. H. Loh, 'Analysis of the spatial variation of seismic waves and ground movements from SMART-1 array data', Earthquake Eng. & Structural Dyn., 13, 561-581, (1985).
- N. Laouami, Variabilité spatiale du mouvement sismique, approche experimentale et modèles théorique, thèse de doctorat, Univ. Evry Val d'Essone, 1995.