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Introduction



Seismic Hazard Analysis (SHA)

e Deterministic SHA (DSHA)
* No consideration of earthquake recurrence rate

* Probabllistic SHA (PSHA)
e Explicit inclusion of earthquake recurrence rate



DSHA Methodology

e Select finite set of earthquake scenarios (M,R)

e Select site where hazard is to be estimated

e Estimate median ground motion for each scenario (y’|m,r)

* Select largest value of Yy’ (Yimay)

* Select desired exceedance probability of y,....:
PLY>YmaxlM,1]

e Calculate fractile (percentile) of y,.,; X =1—-P[Y>Y . |Jm,r]

* Determine standard normal variate of x (z,)

e Compute xth-percentile value of y...:

Iog ymax,x = Iog ymax T ZxGangY
* Repeat for all sites of interest



PSHA Methodology

e Select all possible earthquake scenarios (M,R)
e Select site where hazard is to be estimated
e Estimate median ground motion for each scenario (y’|m,r)
e Specify recurrence frequency of each scenario (vim,r)
e Specify ground-motion value of interest (y)
e Calculate value of z, associated with y:
Zy = (|Og y — |Og y/) / GaIogY
e Calculate ground-motion probability of y: P[Y>y|m,r] =1 — X
e Calculate exceedance frequency of y: v x P[Y>y|m,1]
* Sum exceedance frequencies over all scenarios (M,R)
* Repeat for different values of y and for all sites of interest



Seismic Hazard Equation

V(Y>y) = 2src IMIR V X P[Y>y|m,r] fR(rlm) fM(m) dr dm

where,
o v(Y>y) = annual exceedance freguency
e v=v|m,r = recurrence frequency of m, r
e M,m = earthquake magnitude
° R, = source-to-site distance
e fy,(M) = probability that M = m
e fo(r|m) = probability that R = r given m

e P[Y>y|m,r] = probabillity of Y>y given m,r



Uncertainties



Types of Uncertainties

* Aleatory

* Generally modeled using standard error of individual
relationships or random (stochastic distribution of a
parameter

* Epistemic

* Generally modeled using multiple relationships or
error in median or mean value of a parameter



Aleatory Uncertainties

 They are random in nature

* For all practical purposes, they cannot be known
In detall or cannot be reduced

* They are susceptible to analysis concerning their
origin, their magnitude, and their role in PSHA

* They are used to calculate a single estimate of
annual exceedance frequency (seismic hazard)
using the seismic hazard equation



Epistemic Uncertainties

* The quantify the lack-of-knowledge arising
because our scientific understanding is imperfect
for the present

* They are of a character that in principle are
reducible through further research and gathering
of more and better earthquake data

* They are used to calculate the “mean” and
“fractiles” (statistics) of seismic hazard



PSHA Components



Model Components

e Seismotectonic model
e Source zonation
e Earthquake recurrence
* Ground-motion model
e Attenuation law
e Site amplification
e PSHA calculation



Schematic of PSHA Components
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Source Zonation

 Faults
e Area sources
e Gridded seismicity



Example Source Zonation Model
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Example Source Zonation Model
California

| CALIFORNIA FAULT PARAMETERS
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Source Zonation

* Aleatory Uncertainties

* Location of epicenters within an area source or in a
zone of gridded seismicity

* Location of hypocenters on a fault

* Location of rupture centroids on a fault
* Rupture dimensions (random part)
 Distribution of focal depths




Fault Rupture Model

A 3D model enables proper calculation of

distance & ground motion

Surface Fault Trace

(The orientation of fault is

known as the Azimuth)
Fault Dip

(The angle from horizontal)

Fault Plane
(Defines fault surface)

-

Epicenter (Point on the

— surface directly above

the hypocenter)

Rupture Surface
(Area that moves in EQ)

Hypocenter

(Point at which rupture starts)



Source Zonation

e Epistemic Uncertainties
* Type of source (fault, area, grids)

e Size and configuration of sources

e Location, shape and size of area sources

e Fault length, width, depth and dip

e Segment or multi-segment ruptures (fault cascading)
* Rupture dimensions (epistemic part)
e Style of faulting

 Strike slip, reverse or thrust

e Source activity



Fault cascading
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Earthquake Recurrence

e Characteristic earthguake relation
e Gaussian magnitude-frequency distribution
* Uniform magnitude-frequency distribution

e Gutenberg-Richter law
e Exponential magnitude-frequency distribution
*logN=a-bM; m ., <M<m_.,

* Characteristic recurrence relation
* Combination of characteristic and exponential
* Could also be treated as epistemic uncertainty



Example EQ Recurrence Relations
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Earthquake Recurrence

* Aleatory Uncertainties
* Selected magnitude-frequency distribution
* Maximum magnitude (random part)
e Characteristic magnitude (random part)



Earthquake Recurrence

e Epistemic Uncertainties
* Type of recurrence relation
 Minimum magnitude
* Maximum magnitude (epistemic part)
* Gutenberg-Richter a- and b-values (correlated)
* Fault slip rate or seismic moment rate

e Other fault parameters
* Area
e Shear rigidity



Ground Motion (Attenuation)

e Attenuation laws
 Uniform site condition
e Uniform tectonic environment

e Ground-motion parameter
* Intensity (MSK, MMI)
* Peak ground acceleration (PGA)
* Spectral acceleration (S,)



Ground Motion (Attenuation)

* Aleatory Uncertainties
e Standard error of relationship (sigma)
* Lognormal distribution (Gaussian on log Y)

* Parameter conversion (random part)
 Dispersion in Intensity to PGA relationship
* Dispersion in PGA to S, relationship



Ground Motion (Attenuation)

e Epistemic Uncertainties
* Type of tectonic environment

* Attenuation law (epistemic part)
* Functional form
e Database selection criteria
e Characterization of site conditions
* Method of analysis

e Parameter conversion (epistemic part)
e Multiple Intensity to PGA relationships
* Multiple PGA to S, relationships



Site Amplification

e Site classification criteria
* Geological site categories
* NEHRP site categories (V¢3q)
* Shear-wave velocity (V¢ 5)
* Shear-wave velocity (1/4 wavelength)

e Site amplification factors

* |ntensity
* PGA
° Sa



Example NEHRP Site Map
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Site Amplification

* Aleatory Uncertainties
* Typically considered as part of attenuation law
e Additional uncertainty might be needed

e Epistemic Uncertainties
e Site classification criteria
e Site category

e Conversion factors
* Reference site condition (e.g., V 3,=760 m/s)
* Reference ground-motion parameter



Effect of Site Amplification on S,

5%-Damped Horizontal Acceleration (g)
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Seismic Hazard Calculation



Hazard Calculation Components

* Aleatory component

* Epistemic component
* Logic tree
e Epistemic calculation

e PSHA results




Aleatory Component

V(Y>y) = 2src IMIR V X P[Y>y|m,r] fR(rlm) fM(m) dr dm

where,
o v(Y>y) = annual exceedance freguency
e v=v|m,r = recurrence frequency of m,r
e M,m = earthquake magnitude
° R, = source-to-site distance
e fy,(M) = probability that M = m
e fo(r|m) = probability that R = r given m

e P[Y>y|m,r] = probabillity of Y>y given m,r



Epistemic Component

* Logic tree
* Modeled as a decision tree structure of epistemic
uncertainties

e Each path through logic tree (branch) represents one
possible combination of models/parameters

* A sub-branch is selected at each node of logic tree
along with is assigned probability (weight)

* Each branch is assigned a probability equal to the
product of the probabilities (weights) of the various
sub-branches



Example Logic Tree

Attenuation Fault Seismic | Segmentation | Segmentation ] Segments Status of { Total Fault Dip Maximum | Recurrence | Recurrence
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Epistemic Calculation

Evaluate logic tree using seismic hazard equation
* Full enumeration (evaluate every possible branch)

* Monte Carlo simulation (N-trials)
e N, =10/ (1-x)
* For x=0.05, N, = 200

Rank by decreasing exceedance frequencies
Calculate weighted mean exceedance frequency

* Weight by branch probabilities (full enumeration method)
* Weight by 1 / N-trials (Monte Carlo method)

Calculate desired fractals exceedance frequencies
e Typically 5th-, 15th-, 50th-, 85th- and 90th-percentile



Seismic Hazard Results

e Seismic hazard
* Annual exceedance frequency: v(Y>y)
e Return period (RP): 1/ v(Y>y)
e Exceedance probability: 1 —exp[-v(Y>Y) x t]
(t = time period of interest; can be 1 year)
e Seismic hazard curve
* Plot of seismic hazard vs. ground-motion parameter (y)

e Uniform hazard response spectra (UHRS, UHS)

* Plot of spectral response, S, vs. period for specified value of
seismic hazard (e.g., 10,000-year mean RP)



Example PGA Seismic Hazard Curve
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Example 5%-Damped UHRS

5%-Damped Horizontal Acceleration (g)
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L essons Learned and Conclusions

* Uncertainty Is a critical element in PSHA

* Uncertainty is composed of aleatory
(randomness) and epistemic (knowledge)
uncertainties

» All appropriate and relevant aleatory and
epistemic uncertainties should be included In the

PSHA calculation

e Aleatory and epistemic uncertainties are
modeled using different methods



Summary of the Presentation

e Aleatory uncertainty Is incorporated using the seismic
hazard equation

e Epistemic uncertainty Is incorporated using full
enumeration or Monte Carlo sampling of logic tree

e Seismic hazard is calculated based on aleatory
uncertainties and is typically displayed as a seismic
hazard curve (e.g., RP vs. ground motion)

e Mean and fractile seismic hazard is calculated based
on epistemic uncertainties and Is displayed as a series
of hazard curves for the mean and selected fractiles of
seismic hazard (e.g., RP)
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