

The Abdus Salam International Centre for Theoretical Physics



International Atomic Energy Agency

H4.SMR/1645-29

#### "2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard"

14 - 25 February 2005

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties

K. Campbell

EQECAT USA IAEA/ICTP Workshop on Earthquake Engineering for Nuclear Facilities - Uncertainties in Seismic Hazard Assessment

## "Overview of Seismic PSHA Approaches With Emphasis on the Management of Uncertainties"

Trieste, Italy, 14 – 25 February 2005 Unit 22 - K. Campbell, USA

## **Contents of the Presentation**

- Introduction
- Uncertainties
- PSHA components
- Seismic hazard calculation
- Seismic hazard results
- Lessons learned and conclusions
- Summary of the presentation
- References and glossary

## Introduction

## Seismic Hazard Analysis (SHA)

- Deterministic SHA (DSHA)
  - No consideration of earthquake recurrence rate
- Probabilistic SHA (PSHA)
  - Explicit inclusion of earthquake recurrence rate

## **DSHA Methodology**

- Select *finite set* of earthquake scenarios (*M*,*R*)
- Select site where hazard is to be estimated
- Estimate median ground motion for each scenario (y'|m,r)
- Select largest value of  $y'(y_{max})$
- Select desired exceedance probability of y<sub>max</sub>: P[Y>y<sub>max</sub>|m,r]
- Calculate fractile (percentile) of  $y_{max}$ :  $x = 1 P[Y > y_{max}|m,r]$
- Determine standard normal variate of  $x(z_x)$
- Compute x*th*-percentile value of  $y_{max}$ :

 $\log y_{\max,x} = \log y_{\max} + z_x \sigma^a_{\log Y}$ 

Repeat for all sites of interest

## **PSHA Methodology**

- Select all possible earthquake scenarios (M,R)
- Select site where hazard is to be estimated
- Estimate median ground motion for each scenario (y'|m,r)
- Specify recurrence frequency of each scenario (v|m,r)
- Specify ground-motion value of interest (y)
- Calculate value of  $z_x$  associated with y:

 $z_{\rm x} = (\log y - \log y') / \sigma^{\rm a}_{\log Y}$ 

- Calculate ground-motion probability of y: P[Y > y | m, r] = 1 x
- Calculate exceedance frequency of *y*:  $v \times P[Y > y|m,r]$
- Sum exceedance frequencies over all scenarios (*M*,*R*)
- Repeat for different values of y and for all sites of interest

## **Seismic Hazard Equation**

 $v(Y > y) = \sum_{\text{src}} \int_{M} \int_{R} v \times P[Y > y|m,r] f_{R}(r|m) f_{M}(m) dr dm$ 

#### where,

- v(Y > y)
- v = v | m, r
- *M*,*m*
- *R*,*r*
- $f_{M}(m)$
- $f_{R}(r|m)$

- = annual exceedance frequency
- = recurrence frequency of m, r
- = earthquake magnitude
- = source-to-site distance
- = probability that M = m
- = probability that R = r given m
- P[Y > y | m, r] = probability of Y > y given m, r

## **Uncertainties**

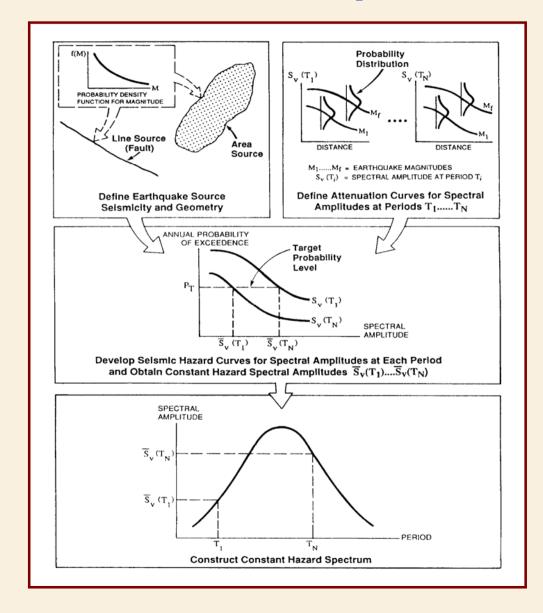
## **Types of Uncertainties**

- Aleatory
  - Generally modeled using standard error of individual relationships or random (stochastic distribution of a parameter
- Epistemic
  - Generally modeled using multiple relationships or error in median or mean value of a parameter

## **Aleatory Uncertainties**

- They are random in nature
- For all practical purposes, they cannot be known in detail or cannot be reduced
- They are susceptible to analysis concerning their origin, their magnitude, and their role in PSHA
- They are used to calculate a single estimate of annual exceedance frequency (seismic hazard) using the seismic hazard equation

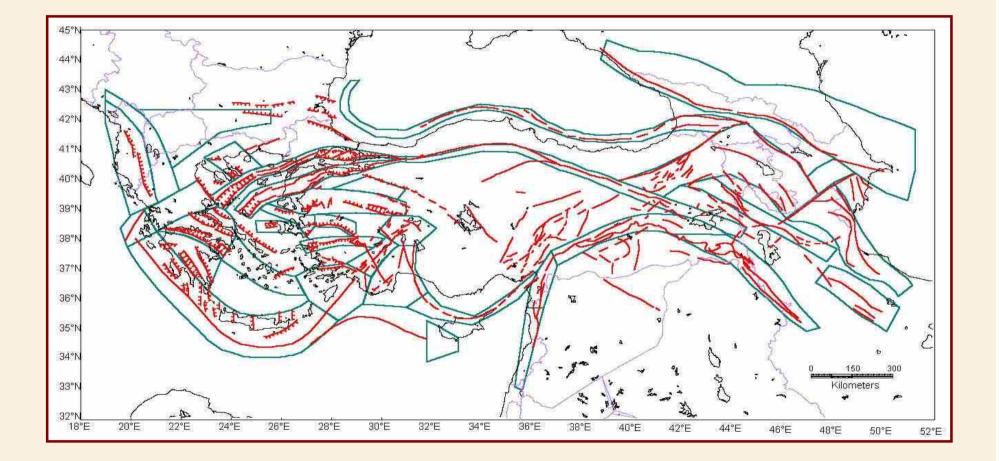
## **Epistemic Uncertainties**


- The quantify the lack-of-knowledge arising because our scientific understanding is imperfect for the present
- They are of a character that in principle are reducible through further research and gathering of more and better earthquake data
- They are used to calculate the "mean" and "fractiles" (statistics) of seismic hazard

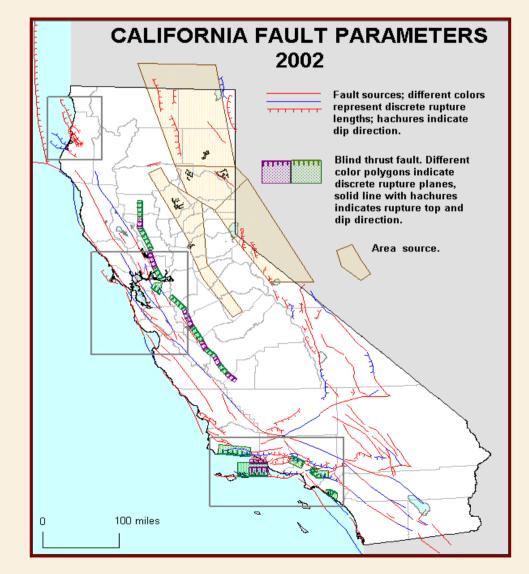
# **PSHA Components**

## **Model Components**

- Seismotectonic model
  - Source zonation
  - Earthquake recurrence
- Ground-motion model
  - Attenuation law
  - Site amplification
- PSHA calculation


#### **Schematic of PSHA Components**



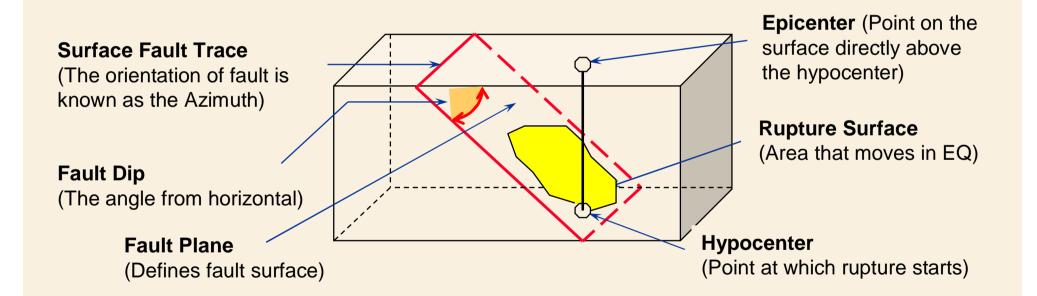

## **Source Zonation**

- Faults
- Area sources
- Gridded seismicity

## Example Source Zonation Model Turkey



## **Example Source Zonation Model** *California*

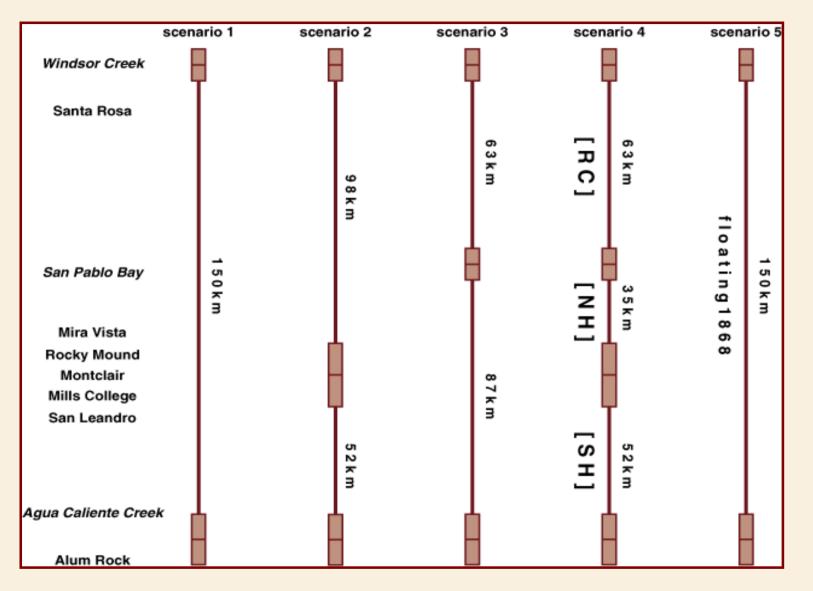



## **Source Zonation**

- Aleatory Uncertainties
  - Location of epicenters within an area source or in a zone of gridded seismicity
  - Location of hypocenters on a fault
  - Location of rupture centroids on a fault
  - Rupture dimensions (random part)
  - Distribution of focal depths

## **Fault Rupture Model**

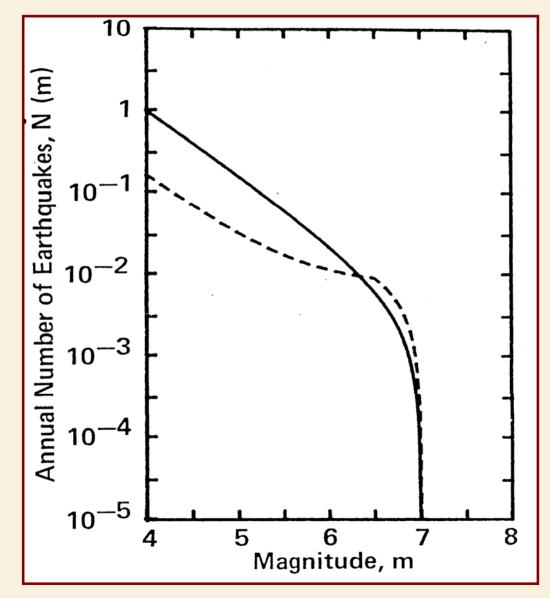
A 3D model enables proper calculation of distance & ground motion




## **Source Zonation**

#### Epistemic Uncertainties

- Type of source (fault, area, grids)
- Size and configuration of sources
  - Location, shape and size of area sources
  - Fault length, width, depth and dip
  - Segment or multi-segment ruptures (fault cascading)
- Rupture dimensions (epistemic part)
- Style of faulting
  - Strike slip, reverse or thrust
- Source activity


## **Fault cascading**



## **Earthquake Recurrence**

- Characteristic earthquake relation
  - Gaussian magnitude-frequency distribution
  - Uniform magnitude-frequency distribution
- Gutenberg-Richter law
  - Exponential magnitude-frequency distribution
  - log N = a bM;  $m_{\min} \le M \le m_{\max}$
- Characteristic recurrence relation
  - Combination of characteristic and exponential
  - Could also be treated as epistemic uncertainty

### **Example EQ Recurrence Relations**



## **Earthquake Recurrence**

- Aleatory Uncertainties
  - Selected magnitude-frequency distribution
  - Maximum magnitude (random part)
  - Characteristic magnitude (random part)

## **Earthquake Recurrence**

#### • Epistemic Uncertainties

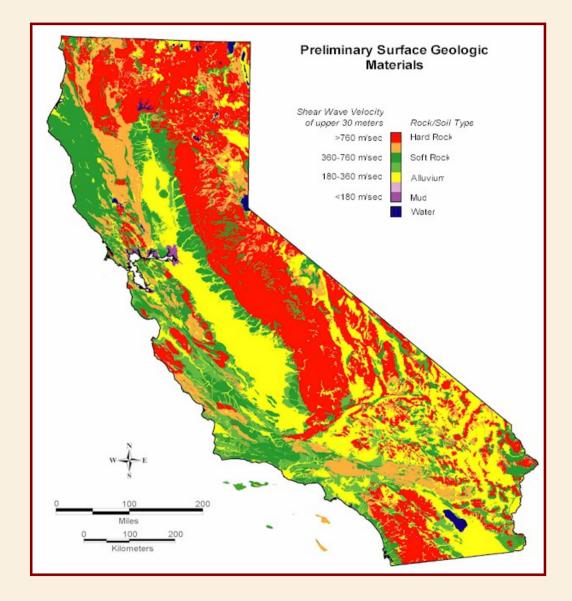
- Type of recurrence relation
- Minimum magnitude
- Maximum magnitude (epistemic part)
- Gutenberg-Richter a- and b-values (correlated)
- Fault slip rate or seismic moment rate
- Other fault parameters
  - Area
  - Shear rigidity

## **Ground Motion (Attenuation)**

- Attenuation laws
- Uniform site condition
- Uniform tectonic environment
- Ground-motion parameter
  - Intensity (MSK, MMI)
  - Peak ground acceleration (PGA)
  - Spectral acceleration  $(S_a)$

## **Ground Motion (Attenuation)**

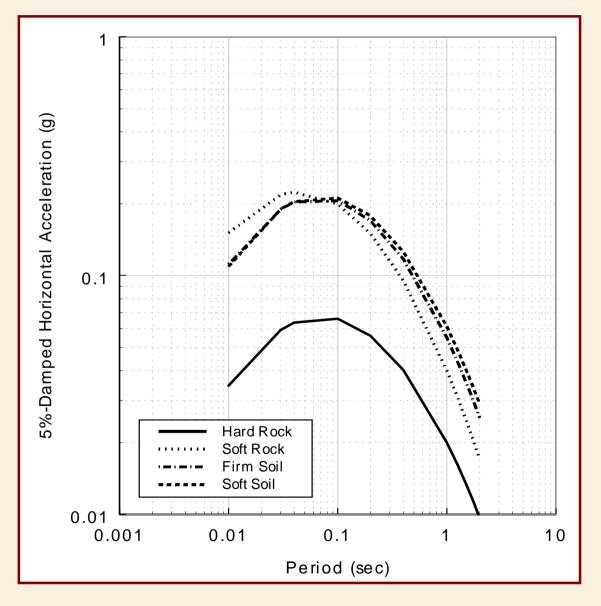
- Aleatory Uncertainties
  - Standard error of relationship (sigma)
  - Lognormal distribution (Gaussian on log Y)
  - Parameter conversion (random part)
    - Dispersion in Intensity to PGA relationship
    - Dispersion in PGA to  $S_a$  relationship


## **Ground Motion (Attenuation)**

- Epistemic Uncertainties
  - Type of tectonic environment
  - Attenuation law (epistemic part)
    - Functional form
    - Database selection criteria
    - Characterization of site conditions
    - Method of analysis
  - Parameter conversion (epistemic part)
    - Multiple Intensity to PGA relationships
    - Multiple PGA to S<sub>a</sub> relationships

## **Site Amplification**

- Site classification criteria
  - Geological site categories
  - NEHRP site categories ( $V_{s30}$ )
  - Shear-wave velocity ( $V_{s30}$ )
  - Shear-wave velocity (1/4 wavelength)
- Site amplification factors
  - Intensity
  - PGA
  - **S**<sub>a</sub>


## **Example NEHRP Site Map**



## **Site Amplification**

- Aleatory Uncertainties
  - Typically considered as part of attenuation law
  - Additional uncertainty might be needed
- Epistemic Uncertainties
  - Site classification criteria
  - Site category
  - Conversion factors
    - Reference site condition (e.g., V<sub>s30</sub>=760 m/s)
    - Reference ground-motion parameter

## **Effect of Site Amplification on S**<sub>a</sub>



## **Seismic Hazard Calculation**

## **Hazard Calculation Components**

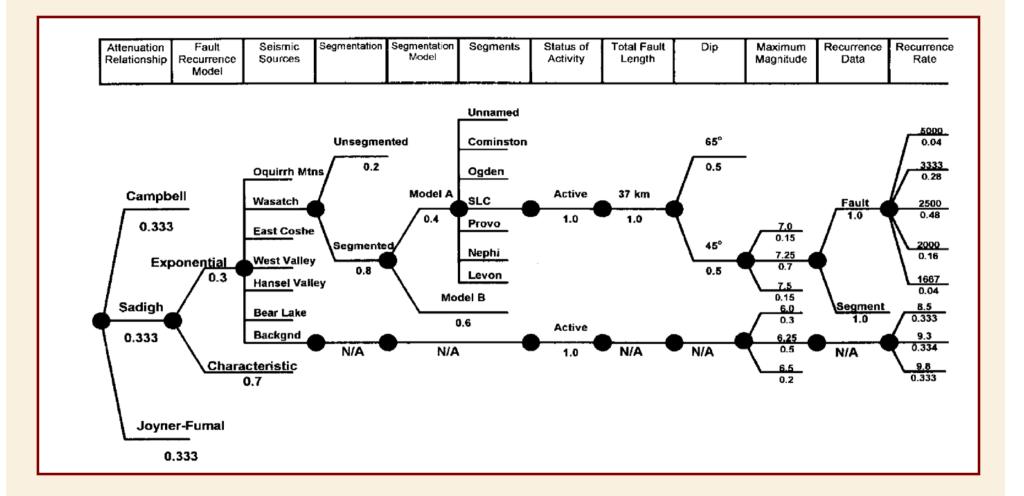
- Aleatory component
- Epistemic component
  - Logic tree
  - Epistemic calculation
- PSHA results

## **Aleatory Component**

 $v(Y > y) = \sum_{\text{src}} \int_{M} \int_{R} v \times P[Y > y | m, r] f_{R}(r | m) f_{M}(m) dr dm$ 

#### where,

- v(Y>y)
- v = v | m, r
- *M,m*
- *R*,*r*
- f<sub>*M*</sub>(*m*)
- f<sub>*R*</sub>(*r*|*m*)
- P[*Y*>*y*|*m*,*r*]


- = annual exceedance frequency
- = recurrence frequency of m, r
- = earthquake magnitude
- = source-to-site distance
- = probability that M = m
- = probability that R = r given m
- = probability of Y > y given m, r

## **Epistemic Component**

#### Logic tree

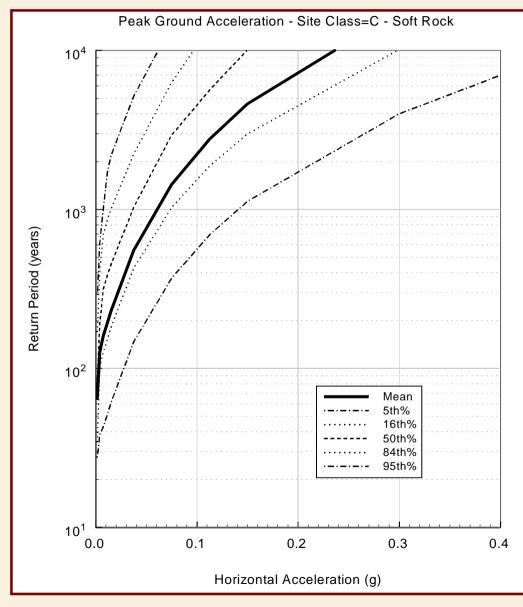
- Modeled as a decision tree structure of epistemic uncertainties
- Each path through logic tree (branch) represents one possible combination of models/parameters
- A sub-branch is selected at each node of logic tree along with is assigned probability (weight)
- Each branch is assigned a probability equal to the product of the probabilities (weights) of the various sub-branches

## **Example Logic Tree**

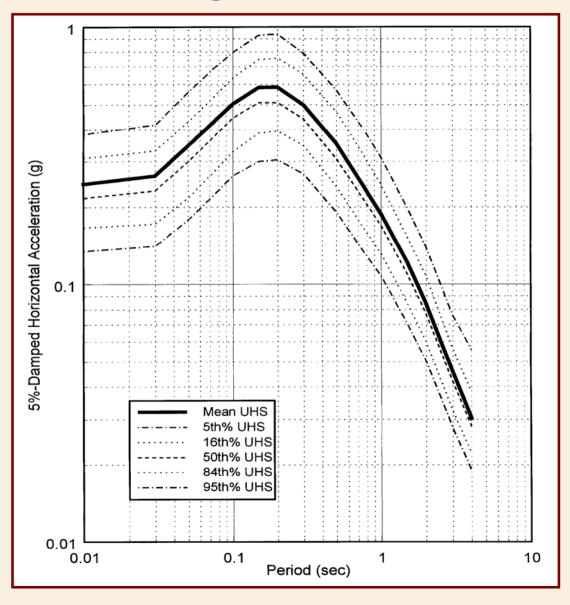


## **Epistemic Calculation**

Evaluate logic tree using seismic hazard equation


- Full enumeration (evaluate every possible branch)
- Monte Carlo simulation (N-trials)
  - $N_{\rm min} = 10 / (1 x)$
  - For x = 0.05,  $N_{\min} = 200$
- Rank by decreasing exceedance frequencies
- Calculate weighted mean exceedance frequency
  - Weight by branch probabilities (full enumeration method)
  - Weight by 1 / N-trials (Monte Carlo method)
- Calculate desired fractals exceedance frequencies
  - Typically 5th-, 15th-, 50th-, 85th- and 90th-percentile

## **Seismic Hazard Results**


#### Seismic hazard

- Annual exceedance frequency: v(Y > y)
- Return period (RP): 1 / v(Y>y)
- Exceedance probability: 1 exp[-v(Y>y) × t] (t = time period of interest; can be 1 year)
- Seismic hazard curve
  - Plot of seismic hazard vs. ground-motion parameter (y)
- Uniform hazard response spectra (UHRS, UHS)
  - Plot of spectral response, S<sub>a</sub>, vs. period for specified value of seismic hazard (e.g., 10,000-year mean RP)

### **Example PGA Seismic Hazard Curve**



## **Example 5%-Damped UHRS**



## **Lessons Learned and Conclusions**

- Uncertainty is a critical element in PSHA
- Uncertainty is composed of *aleatory* (randomness) and *epistemic* (knowledge) uncertainties
- All appropriate and relevant aleatory and epistemic uncertainties should be included in the PSHA calculation
- Aleatory and epistemic uncertainties are modeled using different methods

## **Summary of the Presentation**

- Aleatory uncertainty is incorporated using the seismic hazard equation
- Epistemic uncertainty is incorporated using full enumeration or Monte Carlo sampling of logic tree
- Seismic hazard is calculated based on aleatory uncertainties and is typically displayed as a seismic hazard curve (e.g., RP vs. ground motion)
- Mean and fractile seismic hazard is calculated based on epistemic uncertainties and is displayed as a series of hazard curves for the mean and selected fractiles of seismic hazard (e.g., RP)

#### **References and Glossary**

McGuire, R.K. (2004). Seismic hazard and risk analysis, Engineering Monographs on Miscellaneous Earthquake Engineering Topics, MNO-10, Earthquake Engineering Research Institute, Oakland, California, 221 p.

- Kramer, S.L. (1996). Seismic hazard analysis, In *Geotechnical Earthquake Engineering*, Chap. 4, Prentice-Hall, Inc., Upper Saddle River, New Jersey, p. 106–142.
- Reiter, L. (1990). *Earthquake hazard analysis: Issues and insights*. Columbia University Press, New York, 254 p.
- Somerville, P. and Moriwaki, Y. (2003). Seismic risk and risk assessment in engineering practice. In *International Handbook of Earthquake and Engineering Seismology*, Part B, Chap. 65, Ed. W.H.K. Lee, H. Kanamori, P.C. Jennings and K. Kisslinger, Academic Press, San Diego, p. 1065– 1080.

### **References and Glossary**

Senior Seismic Hazard Analysis Committee (SSHAC) (1997). Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts. Prepared by Lawrence Livermore National Laboratory, NUREG/CR-6372, U.S. Nuclear Regulatory Commission, Washington, D.C.
Thenhaus, P.C. and Campbell, K.W. (2003). Seismic hazard analysis. In *Earthquake Engineering Handbook*, Chap. 8, Ed. W.F. Chen and C. Scawthorn, CRC Press, Boca Raton, Florida, 50 p.