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Introduction

• Switzerland – 4 NPP sites with 5 reactor units
• PRA up to level 2 for full power  and shutdown PRA , 

both including external events and internal hazards is a 
regulatory requirement 

• PRA is used as a complementary safety analysis tool 
for BDBA to identify areas for safety upgrades

• All Swiss NPPs have  complete PRA, which have to be 
upgraded at least once in 5 years



Seismic PRA Methodology (used to 2004)

• Based on an extension of the methodology developed 
for the IPEEE program in  the USA
• Largely  based on methods developed by PLG and EQE 

International (now ABS risk consulting)
• Step 1 :Development of a „PSHA+ for pga (effective 

ground accelerations)  based on seismic hazard maps
• Step 2: Development of a list of safety- important 

components and structures 



Seismic PRA Methodology (used to 2004)

• Step 3: Fragility calculation 
• Review of plant documentation
• Walkdown
• Screening
• Detailed Fragility-Analysis. partially generic  

Fragilities (Masonry walls)
• pga (in the sense of a EGA) as basis parameter



Seismic PRA Methodology (used to 2004)

• Step 4 – Development of a Plant –Logic Model
• Development of failure models and conditional failure 

probabilities
• Seismic PRA model
• Model Integration

• Step 5: Quantification and Sensitivity studies



Seismic Probabilistic Risk Assessment
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Step 1 - Definition of Site Specific Seismic 
Hazard

Seismic Hazard

Assessment of Upper 
Bound Magnitudes and 
Magnitude-Frequency 

Relationships

Seismic Sources in 
the region of 
interest

Earthquake 
History Ground Motion

Attenuation 
RelationshipsExtrapolation into the 

area of weak and very 
strong earthquakes



Estimation of Hazard Frequencies

For Goesgen 
a quadratic 
recurrence 
law was used



Site Specific Seismic Hazard

• Original Assessment by B&H – Goesgen -1991
• Basis for Seismic-PRA 1993
• Result presented as a DPD (108 functions with 

corresponding weighting factors) in terms of PGA (peak 
ground acceleration)

• Adjusted for the PRA Update, 2001
• Extension into the area of weak earthquakes
• Extrapolation of the hazard functions into the area of very 

low annual frequencies (< 10-8/a , 10-10/a cutoff value)



Step 1 - PSHA

• Based on an extrapolation of existing seismic hazard maps
• Switzerland is a low to moderate seismic country
• Moderate activity in the „Wallis“ and in the Basel-area, Ticino
• No historic macro-seismic events with magnitude >5.5 in any other area

• Two different zonations
• Two different conversion formula from  intensity to magnitude
• Two different attenuation laws including azimuthal dependence
• Total uncertainty in the hazard limited to n σ=0.67



Site-Specific Hazard

• B&H developed 108 
diskrete hazard curves 
for fixed pga values

• Basis for the 
development of a 
cumulative hazard 
distributions



Site-Specific Seismic Hazard

• Low (?)spread of uncertainties  
was later criticized (by 
seismologist, engineers criticized 
the large spread of data and the 
need of extrapolation)

• Error – common to most PSHA 
studies, curves based on Uniform 
seismic hazard spectra, what is 
meaningless for a PRA

• A seismic initiator has always ist 
origin at one source associated 
with a frequency associated to 
that source



Seismic Hazard Curves (US plant)
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CCF in Seismic PRA- Methodology – the Use of 
Uniform Hazard Spectra

The use of 
UHS is 
only 
justified if 
the hazard 
is 
dominated 
by the 
influence 
of one 
source



Site Specific Seismic Hazard, Problems

• RISKMAN© seismic module allowed (till 2004) only 
the use of 9 seismic hazard curves, original 108 
curves had to be condensed into 9 

• The used ABS(EQE) - DPD-modelling approach in 
context with the data extrapolation led to a large 
numerical error

• Alternative approach developed based on data 
analysis, Model of normally distributed  weighting 
factors 



Sensitivity Analysis on Site specific 
Seismic Hazard, 

• Sensitivity study on 
hazard curve integration
• ABS/DPD-Model intersects 

the  85%-graph from the 
original PSHA by B&H (for 
low seismic areas not to be 
expected)

• Model of normally 
distributed weighting factors 
fits reasonably between the 
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Step 2 – List of safety important 
components and structures

• Starting list of about 600 items
• Residual Heat Removal Function
• Support Functions (electrical equipment)
• New (different from internal event PRA) Passive 

components and structures
• List later reduced based on screening, use of 

super components



Step 3 – Fragility Analysis

• Detailed Review of Plant Documentation
• Walkdown 
• Screening – based on generic fragilities, EQE –

external events database
• Effort for detailed fragility analysis reduced to 

less than 100 items, some of them could be 
summarized to common calculational units



Fragility Analysis Flow Chart
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Fragility Derivation

• For GÖSGEN, fragility was extrapolated from design 
information by quantifying factors of conservatism and 
variability.

• Am= FC*FRE*FRS*ASSE = median PGA capacity

• FC = Capacity Factor (Strength and Ductility Contribute)

• FRE = Response Factor for Equipment/Block Walls

• FRS = Response Factor for the Structure

• HCLPF Capacity = Am*e-[1.65(βR+βU)]
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Development of a Plant- Logic Model

• Definition of failure modes and failure impacts of seismic components on plant 
safety functions (PSA-components)

• Problem – dependent „secondary“ failure modes, failure of non-structural 
equipment which can fail plant equipment
• Example – failure of masonry walls (non-structural)
• Special expert judgement methodology developed based on a decomposition of 

the failure modes to potential damage effects
• Individual assessment of more than 450 masonry walls and wall sections

• Development of the final PRA-model
• Model size limitations (software)
• Iterations required, but limited due to regulatory requirements 



Expert judgement approach for wall categorization and 
development of conditional probabilities

Table 6-1 Assignment of masonry walls in the electrical building to the classes. 
 
Elevation Class A/ 

Conditional 
Probability 

Class B/ 
Conditional 
Probability 

Class C/ 
Conditional 
Probability 

Class D/ 
Conditional 
Probability 

Class E/ 
Conditional 
Probability 

Class F/ 
Conditional 
Probability 

-7.5m 10 0.423 7 0.414 0 0.398 6 0.2915 3 0.226 6 0.1325 
-4.2 m 16 0.423 2 0.414 4 0.398 0 0.2915 0 0.226 2 0.1325 
0.0 m 6 0.433 14 0.424 6 0.408 9 0.3015 20 0.236 33 0.1425 
+4.1 m 4 0.433 13 0.424 24 0.408 8 0.3015 33 0.236 52 0.1425 
+7.6 m 3 0.433 11 0.424 24 0.408 1 0.3015 8 0.236 40 0.1425 
+10.3 m 0 0.433 2 0.424 7 0.408 0 0.3015 0 0.236 2 0.1425 
+12.0 m 0 0.433 2 0.424 27 0.408 1 0.3015 15 0.236 18 0.1425 
+14.4 m 0 0.433 0 0.424 6 0.408 0 0.3015 4 0.236 0 0.1425 
+19.0m 0 0.433 0 0.414 4 0.398 0 0.2915 0 0.226 0 0.1325 
Total 
Walls in 
Class 

39  51  102  25  83  153  



Conditional Probability for Maximum Wall 
Failure Impact

• Detailed analysis 
because seperate 
modeling of >450 walls is 
not feasible, large 
correlation of failure 
modes

• Adressed were
• Direct mechanical impact
• Debris Loads
• Induced fire damage
• Dirt/small debris
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RISKMAN® Model Linked Level1/Level2 Event 
Tree Model

Eventree(s) for External Events
Eventree(s) for Support Systems

IE

Eventree(s) for Plant Safety Systems
and AM/SAMG Functions Containment Event Tree
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Step 5 Quantification and Sensitivity 
Studies
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Sensitiviy Study – Lessons

• Reduction of uncertainties in 
the hazard definition leads to 
a large reduction of the risk

• Performed seismic upgrade 
of  58 masonry walls led to a 
significant reduction of the 
seismic risk 

• Additional possible upgrades
do not lead to significant risk
reduction
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Uncertainty Anaylsis– Before Seismic Upgrade



Uncertainty Analysis after Seismic Upgrade of 
Masonry Walls



Sensitivity studies on coupled dependend failure modes 
Core Damage Frequency Comparison
380V Switchgear
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Large Early Release Frequency Comparison
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Lessons and Conclusions from Swiss 
PRA-Studies

• Reduction of uncertainties in seismic hazard analysis is the key
factor to obtain a meaningful seismic risk profile (error factors 
shall be smaller than 10) 
• Swiss utilities launched the PEGASOS - project
• Seismic initiators shall be defined source-specific = Increase in model 

size, limitations of industrial PRA-codes
• Fragility calculations shall be modernized – effort and costs can increase 

by an order of magnitude
• Nonlinear dynamic coupled soil-structure-component-analysis (?)

• degree of sophistication (?), buildings of nuclear facilities are more 
complex than standard buildings and cannot be modelled by simple non-
linear SDOF or simple MDOF-systems

• Alternative – decoupled analysis (will be to pessimistic)
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PEGASOS-Project

GOAL:  Probabilistic Seismic Hazard Analysis based on 
SSHAC Level 4 procedures
NUREG  CR-6372 Recommendation for PSHA: Guidance
on Uncertainty and Use of Experts (SSHAC – Senior
Seismic Hazard advisory Commitee), 1997
Research Study
Seperate treatment of aleatory and epistemic 
uncertainties according the assumptions in SSHAC, 
1997

Actually there is no basis for such a seperation, all 
uncertainties are in the end epistemic, seperation is 
mathematically not justified



PEGASOS

• 4 Subprojects
• Seismic Source Characteristics
• Ground Motion Characteristics
• Site specifc aspects (site amplification)
• Quantification of seismic hazard tests

• 21 experts from Europe and the USA  and 2 TFI (team 
facilitators)



Characterisation of seismic sources



KKW

Station 2

Station 3

f
Station 1

f

ff

Distanz

B
es

ch
le

un
ig

un
g

10Hz

1Hz

Subproject 2 – Ground Motion 
Characteristics



Vergleich

V
er

st
är

ku
ng

sf
ak

to
r

Frequenz

Numerisches Modell

A B

Spektrale Skalierungsfaktoren = Spektum B / Spektrum A

f

A

f
B

1

Subproject 3 – Site Effects

Baugrund Modell

Fels Elev.



Standortspezifische
Gefährdungsspektren

Frequenz

85%

15%
50%

S
pe

kt
ra

le
B

es
ch

le
un

ig
un

g

Gefährdungskurven

Erdbebenkatalog und
seismische Quellen

Q1

Q2

Q3

KKW

Magnituden-
Häufigkeitsbeziehung

Magnitude

Q1

Q3

Q2Lo
g

H
äu

fig
ke

it Q1

Q

Q

Beschleunigung

A
uf

tr
et

en
sw

ah
rs

ch
ei

nl
ic

hk
ei

t

1 Hz

10 Hz

20 Hz

Distanz

B
es

ch
le

un
ig

un
g

10Hz

1Hz

Spektrales
Abminderungsmodell

Standortspezifische
Übertragungsfunktion

V
er

st
är

ku
ng

sf
ak

to
r

1

Frequenz

z.B. P = 10-4 / Jahr

Mmax

PSHA approach in the PEGASOS -
Project

Scaling to 
rock and 
from rock 
to site



Preliminary Results- Deaggregation, Risk is dominated by 
„hidden undetectable near-site seismic sources“



Preliminary Lessons of PEGASOS

• Valuable scientific information but still in a form not 
suitable for practical applications
• Use of instrumentation pga instead of EGA

• Ongoing project, implementation phase
• Goal: Development of the final hazard 

• Currently review of the results and additional analysis
• Validation/Benchmarking of results
• Review of expert judgement procedures of SSHAC

• Long-term working program (?)



Preliminary Lessons of PEGASOS

• Validation tests have shown, that the preliminary 
results are not realistic
• Mathematical accumulation of uncertainties due to an 

incorrect aggregation procedure 
• Not justified use of attenuation laws from the US (where these 

laws are currently recalibrated to get consistency to the theory
of „Precarious rocks“)

• Unjustified seperation between attenuation and site effects 
using crude scaling laws from Northern America

• Possible overestimation of upper magnitude limits
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