

The Abdus Salam
International Centre for Theoretical Physics

International Atomic
Energy Agency

H4.SMR/1645-5

PATISTS

"2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard"

14 - 25 February 2005

Case Studies in Switzerland

J.-U. Klugel

Kernkraftwerk Goesgen-Daeniken Daeniken, Switzerland

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

IAEA/ICTP Workshop on Earthquake Engineering for Nuclear Facilities - Uncertainties in Seismic Hazard Assessment

"Case Studies in Switzerland"

Trieste, Italy, 14 – 25 February 2005 **(Unit 28) - (Dr. Jens-Uwe Klügel)**

Contents

- Introduction
- Seismic PRA Methodology used in Switzerland **Overview**
	- First PSHA in Switzerland (1990)
	- Results of first Seismic PRA (Example NPP Goesgen)
	- Lessons learned from the first Swiss seismic PRA-studies
- The PEGASOS-Project (ongoing) and its consequences
- References

Introduction

- Switzerland 4 NPP sites with 5 reactor units
- PRA up to level 2 for full power and shutdown PRA , both including external events and internal hazards is a regulatory requirement
- PRA is used as a complementary safety analysis tool for BDBA to identify areas for safety upgrades
- All Swiss NPPs have complete PRA, which have to be upgraded at least once in 5 years

Seismic PRA Methodology (used to 2004)

- Based on an extension of the methodology developed for the IPEEE program in the USA
	- Largely based on methods developed by PLG and EQE International (now ABS risk consulting)
- Step 1 :Development of a "PSHA+ for pga (effective ground accelerations) based on seismic hazard maps
- Step 2: Development of a list of safety- important components and structures

Seismic PRA Methodology (used to 2004)

• Step 3: Fragility calculation

- Review of plant documentation
- Walkdown
- Screening
- Detailed Fragility-Analysis. partially generic Fragilities (Masonry walls)
- pga (in the sense of a EGA) as basis parameter

Seismic PRA Methodology (used to 2004)

- Step 4 Development of a Plant –Logic Model
	- Development of failure models and conditional failure probabilities
	- Seismic PRA model
	- Model Integration
- Step 5: Quantification and Sensitivity studies

Seismic Probabilistic Risk Assessment

Step 1 - Definition of Site Specific Seismic Hazard

Estimation of Hazard Frequencies

For Goesgen a quadratic recurrence law was used

Site Specific Seismic Hazard

- • Original Assessment by B&H – Goesgen -1991
	- •Basis for Seismic-PRA 1993
	- \bullet Result presented as a DPD (108 functions with corresponding weighting factors) in terms of PGA (peak ground acceleration)
- • Adjusted for the PRA Update, 2001
	- •Extension into the area of weak earthquakes
	- \bullet Extrapolation of the hazard functions into the area of very low annual frequencies $(< 10^{-8}/a$, 10-¹⁰/a cutoff value)

Step 1 - PSHA

- Based on an extrapolation of existing seismic hazard maps
	- Switzerland is a low to moderate seismic country
	- \bullet Moderate activity in the "Wallis" and in the Basel-area, Ticino
	- •No historic macro-seismic events with magnitude >5.5 in any other area
- Two different zonations
- Two different conversion formula from intensity to magnitude
- Two different attenuation laws including azimuthal dependence
- Total uncertainty in the hazard limited to n σ=0.67

Site-Specific Hazard

- B&H developed 108 diskrete hazard curves for fixed pga values
- Basis for the development of a cumulative hazard distributions

Site-Specific Seismic Hazard

- \bullet Low (?)spread of uncertainties was later criticized (by seismologist, engineers criticized the large spread of data and the need of extrapolation)
- • Error – common to most PSHA studies, curves based on Uniform seismic hazard spectra, what is meaningless for a PRA
	- • A seismic initiator has always ist origin at one source associated with a frequency associated to that source

Seismic Hazard Curves (US plant)

ACCELERATION (cm/sec 2)

CCF in Seismic PRA- Methodology – the Use of Uniform Hazard Spectra

Site Specific Seismic Hazard, Problems

- RISKMAN© seismic module allowed (till 2004) only the use of 9 seismic hazard curves, original 108 curves had to be condensed into 9
- The used ABS(EQE) DPD-modelling approach in context with the data extrapolation led to a large numerical error
- Alternative approach developed based on data analysis, Model of normally distributed weighting factors

Sensitivity Analysis on Site specific Seismic Hazard,

•

KNDS - Normalverteilungsmodell, KDPD - DPD-Modell der EQE/PLGK50 - Median-Kurve nach Basler&HofmannK85 - 85%-Kurve nach Basler und Hofmann Sensitivity study on hazard curve integration

- • ABS/DPD-Model intersects the 85%-graph from the original PSHA by B&H (for low seismic areas not to be expected)
- • Model of normally distributed weighting factors fits reasonably between the

Step 2 – List of safety important components and structures

- Starting list of about 600 items
	- Residual Heat Removal Function
	- Support Functions (electrical equipment)
	- New (different from internal event PRA) Passive components and structures
- List later reduced based on screening, use of super components

Step 3 – Fragility Analysis

- Detailed Review of Plant Documentation
- Walkdown
- Screening based on generic fragilities, EQE external events database
- Effort for detailed fragility analysis reduced to less than 100 items, some of them could be summarized to common calculational units

Fragility Analysis Flow Chart

Fragility Derivation

- • For GÖSGEN, fragility was extrapolated from design information by quantifying factors of conservatism and variability.
	- $A_m = F_c$ * F_{RE} * F_{RS} * A_{SSE} = median PGA capacity
	- F_c = Capacity Factor (Strength and Ductility Contribute)
	- F_{RE} = Response Factor for Equipment/Block Walls
	- F_{RS} = Response Factor for the Structure
	- HCLPF Capacity = $A_m^*e^{-[1.65(\beta_R)]}$ + β_{\bigcup})]

Seismic Fragility Curves

Development of a Plant- Logic Model

- \bullet Definition of failure modes and failure impacts of seismic components on plant safety functions (PSA-components)
- •Problem – dependent "secondary" failure modes, failure of non-structural equipment which can fail plant equipment
	- \bullet Example – failure of masonry walls (non-structural)
	- • Special expert judgement methodology developed based on a decomposition of the failure modes to potential damage effects
	- •Individual assessment of more than 450 masonry walls and wall sections
- Development of the final PRA-model
	- Model size limitations (software)
	- Iterations required, but limited due to regulatory requirements

Expert judgement approach for wall categorization and development of conditional probabilities

Table 6-1 Assignment of masonry walls in the electrical building to the classes.

Conditional Probability for Maximum Wall Failure Impact

- Detailed analysis because seperate modeling of >450 walls is not feasible, large correlation of failure modes
- • Adressed were
	- •Direct mechanical impact
	- •Debris Loads
	- •Induced fire damage
	- •Dirt/small debris

RISKMAN® Model Linked Level1/Level2 Event Tree Model

Step 5 Quantification and Sensitivity Studies

Sensitiviy Study – Lessons

- Reduction of uncertainties in the hazard definition leads to a large reduction of the risk
- Performed seismic upgrade of 58 masonry walls led to a significant reduction of the seismic risk
- Additional possible upgrades do not lead to significant risk reduction

Uncertainty Anaylsis– Before Seismic Upgrade

Uncertainty Analysis after Seismic Upgrade of Masonry Walls

Sensitivity studies on coupled dependend failure modes Core Damage Frequency Comparison 380V Switchgear

Large Early Release Frequency Comparison

Lessons and Conclusions from Swiss PRA-Studies

- Reduction of uncertainties in seismic hazard analysis is the key factor to obtain a meaningful seismic risk profile (error factors shall be smaller than 10)
	- Swiss utilities launched the PEGASOS project
	- Seismic initiators shall be defined source-specific = Increase in model size, limitations of industrial PRA-codes
	- Fragility calculations shall be modernized effort and costs can increase by an order of magnitude
		- Nonlinear dynamic coupled soil-structure-component-analysis (?)
			- degree of sophistication (?), buildings of nuclear facilities are more complex than standard buildings and cannot be modelled by simple nonlinear SDOF or simple MDOF-systems
		- Alternative decoupled analysis (will be to pessimistic)

PEGASOS – a first outlook

PEGASOS-Project

- ¾ **GOAL: Probabilistic Seismic Hazard Analysis based on SSHAC Level 4 procedures**
- ¾ **NUREG CR-6372 Recommendation for PSHA: Guidance on Uncertainty and Use of Experts (SSHAC – Senior Seismic Hazard advisory Commitee), 1997**
- ¾ **Research Study**
- ¾ **Seperate treatment of aleatory and epistemic uncertainties according the assumptions in SSHAC, 1997**
	- \blacktriangleright **Actually there is no basis for such a seperation, all uncertainties are in the end epistemic, seperation is mathematically not justified**

PEGASOS

- 4 Subprojects
	- Seismic Source Characteristics
	- Ground Motion Characteristics
	- Site specifc aspects (site amplification)
	- Quantification of seismic hazard tests
- 21 experts from Europe and the USA and 2 TFI (team facilitators)

Characterisation of seismic sources

Subproject 2 – Ground Motion Characteristics

Subproject 3 – Site Effects

Spektrale Skalierungsfaktoren = Spektum B / Spektrum A

PSHA approach in the PEGASOS - Project

Preliminary Results- Deaggregation, Risk is dominated by "hidden undetectable near-site seismic sources"

Fig. 3-5.25: Gösgen, horizontal component, rock, surface, hazard deaggregation by magnitude, distance and epsilon for ground motion level 0.7g, PGA.

Preliminary Lessons of PEGASOS

- Valuable scientific information but still in a form not suitable for practical applications
	- Use of instrumentation pga instead of EGA
- Ongoing project, implementation phase
	- Goal: Development of the final hazard
- Currently review of the results and additional analysis
	- Validation/Benchmarking of results
	- Review of expert judgement procedures of SSHAC
- Long-term working program (?)

Preliminary Lessons of PEGASOS

- Validation tests have shown, that the preliminary results are not realistic
	- Mathematical accumulation of uncertainties due to an incorrect aggregation procedure
	- Not justified use of attenuation laws from the US (where these laws are currently recalibrated to get consistency to the theory of "Precarious rocks")
	- Unjustified seperation between attenuation and site effects using crude scaling laws from Northern America
	- Possible overestimation of upper magnitude limits

References

- 1. M.K. Ravindra, W.H. Tong, S. Rao, Seismic PSA Training Course, ABS Consulting, 2003.
- 2. J.-U. Klügel, Lessons learned from seismic PRA at Goesgen Nuclear Power Plant. WANO-Workshop on the Application of Probabilistic Safety Assessment, Cape Town, December 2-4, 2002.
- 3. Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, NUREG/CR-6372, 1997.
- 4. J.-U. Klügel, S. Rao, S.Short. Challenges to future Seismic PRA, in: C.Spitzer, U. Schmocker & V. Dang (eds): Probabilistic Safety Assessment and Management.PSAM 7/ESREL'04, 2004, pp. 1232-1237.
- 5. J.-U. Klügel. 2004. Problems in the Application of the SSHAC Probability Method for assessing Earthquake Hazards at Swiss Nuclear Power Plants – in Press.