

TIESCO

H4.SMR/1645-32

"2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard"

14 - 25 February 2005

Dealing with large uncertainties: maximum ground motion and physical limitations

Pierre-Yves Bard

LGIT/LCPC Grenoble, France

	RESULTS	;	
GÖSGEN	MÜHLEBERG	BEZNAU	LEIBSTADT
11.6	10.4	6.0	12.9
infinite	infinite	infinite	infinite
	GÖSGEN 11.6 infinite	RESULTS GÖSGEN MÜHLEBERG 11.6 10.4 infinite infinite	RESULTS 6ÖSGEN MÜHLEBERG BEZNAU 11.6 10.4 6.0 infinite infinite infinite

GDS THEORETICAL MODEL
$$\frac{\partial \tau(z)}{\partial z} = \rho \frac{\partial^2 u}{\partial z^2}$$
, $\tau(z) = G(z) \frac{\partial u}{\partial z}$ $G(z) = G_0 \left(\frac{z}{H}\right)^p$, $V(z) = V_0 \left(\frac{z}{H}\right)^{\frac{p}{2}}$ $\frac{\partial^2 u}{\partial z^2} + \frac{p}{z} \frac{\partial u}{\partial z} - \frac{1}{V_s^2} \left(\frac{h}{z}\right)^p \frac{\partial^2 u}{\partial t^2} = \frac{1}{V_s^2} \left(\frac{h}{z}\right)^p \frac{d^2 v_g}{dt^2}$ Boundary conditions: $\lim_{z \to 0} G(z) \frac{\partial u}{\partial z} = 0$ $u(h) = 0$

$$u = X(z) e^{i\omega t} \implies X = A z^{\frac{1-p}{2}} \int_{\frac{p-1}{2-p}} \left[\frac{2\omega h^{\frac{p}{2}}}{V_s(2-p)} z^{\frac{2-p}{2}} \right]$$

Eigenfrequencies:

$$X(h) = 0 \implies \int_{\frac{p-1}{2-p}} \left[\frac{2\omega h}{V_s(2-p)} \right] = 0 \qquad f_i = \rho_i \frac{V_s(2-p)}{4\pi h}$$

$$u(z,t) = \sum_{i=1}^n X_i(z)Z(t) \qquad X_i(z) = \begin{cases} \cos(\frac{\omega_i z}{V_s}) & p = 0\\ J_v(\frac{\omega_i z}{V_s}) & 0
264 Workshop "Uncertainties in seismic hazard uncertainties", Trieste, 02/2005$$

Maximum ground surface acceleration

$$\mathbf{u}_{i}(z) = \alpha_{i} S_{d}(\omega_{i}, \xi_{i}) X(z)$$

$$\mathscr{K}_{\max}(z=0) = \left[\sum_{i=1}^{N} \left(\alpha_{i} S_{a}(\omega_{i},\xi_{i})\right)^{2}\right]^{\frac{1}{2}}$$

Shear strain attributed to fundamental mode:

$$\lambda(z) = \frac{\gamma(z)\,\omega_1^2}{S_a(\omega_1,\xi_1)} = \alpha_1 \left(\frac{2}{a}\right)^{\nu} \,\Gamma\left(\frac{1}{2-p}\right) \left\{ (1-p)\,z^{-\frac{p+1}{2}} J_{\nu}\left(a\,z^{\frac{2-p}{2}}\right) + a\,\frac{2-p}{2} z^{\frac{1-2p}{2}} J_{\nu-1}\left(a\,z^{\frac{2-p}{2}}\right) \right\}$$

PROCEDURE

1. define the input motion at the rock interface by its pseudo acceleration response spectrum Sa*.

2. compute the eigenfrequencies and mode participation factors

3. plot the normalized shear strain versus depth together with the yield strain $\gamma_{\rm f}$.

4. determine the depth z_0 and the scaling factor μ for which

$$\gamma_{\rm f} = \mu \frac{{\rm S}_{\rm a}^*}{\omega_1^2} \lambda({\rm z}_0)$$

5. define $S_a = \mu S_a^*$ the maximum possible pseudo acceleration from which the maximum ground surface acceleration $\ddot{u}_{max} (z = 0)$ is determined

	Logic 1 Pecker's me	t <mark>ree sti</mark> chanical c	ructure approach	e + v	veights	Hz4 = 50%	
	 Uncertai Base 	nty in pga v oga values :	values				
	Site	Beznau	Gösgen		Leibstadt	Mühleberg	
	Pga (m/s²)	×	y z T		Т		
	 Subbranching Applying so Multiplication 	into 4 branc caling factors on factor	hes to these pga 0.707	values	1,414	2,0	
	Weigł	nts	۵%	b%	c%	d%	
TAFA	Associated spect • Normalized sp • Normalized sp Vorkshop "Uncertaint	otra : 2 bro bectral shape bectra from o	anches es from line u% existing SM v% azard uncertain	ar comp 1 record 1 ties" Tries	utations (TP3- s (soil, TP3-Th ste 02/2005	TN-0358) N-0359) Site eff	ects

	/ertical c	componer	nt	V1
Basis No limitation relat ⇒(except pos Only Fäh's empirio Logic tree and we ■ Lower bound est · 4 multiplicatio	red to soil beh sibly for downgoir cal approach ights timates → 2 b n factors ≥ 1	avior ng motion) ranches	= :	100%
AA 141 11 11 11 1	1.0	1.2	1.5	2.0
Multiplication tactor				

