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M otivations.....

f.o Quantum Gravity -at Planck length - must have - T
Noncommutative geometric structure - Limit of classical
gravity - emerge - Commutative geometry of spacetime
we know. Just like:

limO Q.Physics = Cl.Physics

h—

& Expectation:

lim Non commutative geometry
Planck length—0

Commutative Geometry



Folklore..

# One should study - Semiclassical Gravity-Or-simple
models - where - such information can be obtained

# Black hole Physics - near horizon geometry - specifically
for small blackholes- may exhibit - such - behaviour ?

# With modern developements in understanding
microstates of blackhole - one should - relook at the
geometry of - horizon

# In most of the studies of noncommutative geometry in
Physics - such structures are introduced from outside as
additional parameter- whereas it should result by virtue of
guantising gravity.



NCG and guantum physics.

#® Recent times NC Geometry has become popular.
Though it was introduced about 60 years back by Snyder
(PR 1949). Just like introducing / descretises phase
space and reduces the phase space degrees of freedom
Introducing a fundamental length will reduce the degrees
of freedom further and hopefully reduce severity of
divergences which plagued the QFT’s then. The original
iIdea was attributed to Heisenberg himself.

#® Renormalisation program and its success with QED
made this suggestion unpopular and quickly forgotten.



NCG and quantum physics..

# In string theory gets introduced through the background
fields 5,,. This leads in addition to new physics, mixing
of infrared and ultraviolet behaviour of field theories. seierg

and Witten, Minwalla etal

#® The NC geometry can also be studied in a discrete
setting- examples of which are fuzzy spheres. These
serve as alternatives to lattice regularisations with
advantages such as avoidance of fermion doubling. wadore;

Balachandran,trg and Ydri

# Nonlinear models such as C'P' model have interesting
and novel topological behaviour in such spaces. ba and immizitrg

and Harikumar

# And many more....



Unitary NC spacetime..

# Having seen the history/philosophy of Noncommutative
geometric spacetime we will first study a simpler version
of spacetime with noncommutativity and its implications

for quantum theory.
# We will start with 1 + 1 dimensional theory. And look at
the spacetime commutators of the form:

{Tp, 20} = 10,7

# Its naively remarked that this leads to non unitary
guantum theory. This is due to incorrect appreciation of

the role of "Time".



NC spacetime...

f.o But the correct statement is if a group of transformations T
cannot be implemented on the algebra A, (R*) generated
by 2, with our relation then it will not be a symmetry.

#® \We readily see that spacetime translations are
automorphisms of Ay (R?): With U(@)i, = &, + a, we
see that,

U(@)d,,, U(@)iy) = iz .

#® The time-translation automorphism is:
U(r) :=U((7,0))

o |



NC spacetime..

o, N

Without the time-translation automorphism, we cannot
formulate conventional quantum physics.

# The infinitesimal generators of I/(a) can be obtained from

Z/{(C—L») _ e—iaop()—l—z’alpl .

® Then we have

. 1
Py= ——-adz
0 0 X1,

ad &0 = [2,,a] , a € Ag (R?) .



NC spacetime..

o, N

Without the time-translation automorphism, we cannot
formulate conventional quantum physics.

# The infinitesimal generators of I/(a) can be obtained from

Z/{(C—L») _ e—iaop()Jrz'alpl )

® Then we have



NC spacetime..
.

It Is a special feature of two dimensions that the (2 + 1) T
connected Lorentz group is an inner automorphism group

# Its generators are ad.Jyand adk, ,
.
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NC spacetime..
o, -

It Is easy to see Parity is NOT an automorphism.

P [C%o,f?l] — [io,f?l] ; 101 — 101 .

# But time reversal |S: due to anti-linearity.
T 101 — —i01 |

® CPT will be broken! This will have implications for
spin-statistics connection!. (neutrino puzzle?)

#® The group of area preserving diffeomorphisms also
generates automorphisms of .4, (R?). This group
Includes the Lorentz group susskind,sackiw.

o |



NC spacetime..

#® Causality: It is impossible to localize (the representation
of) “coordinate” time i in A, (R*) sharply. This leads to
faI|UI‘e Of Causa“ty Chaichian et al.

# The following important point was emphasised to us by
Doplicher. In quantum mechanics, if p is momentum,
exp(i&p) Is spatial translation by amount £. This £ is not
the eigenvalue of the position operator z. In the same
way, the amount 7 of time translation is not “coordinate
time”, the eigenvalue of 7. It makes sense to talk about a
state and its translate by U()

#® Concepts like duration of an experiment for 8 = 0 are
expressed using U(7). They carry over to the
noncommutative case too.



NC spacetime..

#® With loss of causality, one loses local gft's as well. As the
best proofs of the spin-statistics connection require

locality.

# Precision experiments to test the spin-statistics
connection are possible capimeeing. If Signals for this
violation due to ¢ # 0 can be derived, good
phenomenological bounds on |#| should be possible.



Representation theory..
o, -

Observables, states and dynamics of quantum theory are
to be based on the algebra .4, (R?). Here we develop the
formalism for their construction.

» To each & € Ay (R?), we associate its left and right
regular representations a” and &,

aB=ap, a"p=pa, §edy (R,

) Ny ) \R
with &%t = (&ﬁ) and ot = (5&) . The carrier
space of this representation is A, (R?) itself.

# An “inner”product on A4, (R*) is needed for an eventual
construction of a Hilbert space.

o |



Representation theory..

» Consider amap y : Ay (R*) — C which is also
positive,i.e.,

® Then we can set:

(5.3)=x(s79)

# |t will be a scalar product if xy (&*«) = 0 implies & = 0. If
that is not the case, it is necessary to eliminate null

vectors.

#® We illustrate these ideas briefly in the context of the
commutative case, when 6 = 0 J



The Commutative case

o, N

The algebra C in the commutative case Is
Ao (RQ) = C* (R x R),
# There is no distinction now between & and a*: a* = a'*.

#® There Is a family of positive maps y; of interest obtained
by integrating I v In z; at “time” ¢:

xt(¥) = / dr1(t, z1) ,

#® We get a family of spaces C; with a positive-definite
sesquilinear form (., .);:

<¢7@)t — / dx1 ¢*(t7$1)¢(t7$1) :

o |



The Commutative case

f.o Every function & which vanishes at time ¢ is a two-sided T
ideal 7/=" = 7 of C. As elements of C;, they become null

vectors.

#® As in the GNS construction v, We can guotient by these
vectors and work with C; /\Y.

# The completion C;/N? of Ct/MO In this scalar product
gives a Hilbert space #?

# For elements ¢ + A and y + N in C; /N, the scalar
product is

(10 _|_'/\/;507X _|_'/\/;50)t — (¢7X>t :

o |



The Commutative case

o, N

The quantum mechanical Hilbert space however is not

)

# It is constructed in a different way, starting from a
subspace H,; C C; which contains only {0} as the null
vector: Ho; N NP = {0}

® Then y; Is a good scalar product on ﬂo,t and the quantum

mechanical Hilbert space is given by +! = %, the

completion of ;.

# The subspace H,; depends on the Hamiltonian A and is
chosen as follows.

o |



The Commutative case

f.p Let 7 be a time-independent Hamiltonian on T
commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L* (R).

» We now pick the subspace H,; of C; by requiring that
vectors in C; obey the time-dependent Schrddinger

equation:
Hot = {1 € Cs : (104, — H) (0, 1) = 0}

# The operator i0,, IS not hermitian on all of C;:
(wa Za.I'OX)t # (Zarowv X)t for generic wa X € Ct )

o |



The Commutative case

f.o Let 7 be a time-independent Hamiltonian on T
commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L* (R).

» We now pick the subspace H,; of C; by requiring that
vectors in C; obey the time-dependent Schrddinger

equation:
Hot = {1 € Cs : (104, — H) (0, 1) = 0}

# The operator i0,, IS not hermitian on all of C;:

(w,iﬁmox)CM)t for generic 1, x @t ,

L.p but on H,, it fulfills this property: J




The Commutative case

-

# We notice since,

Y(xg+ 7,21) = (e_”(ia"”o)w) (20, x1)

= (6_”}%) (z0,21)

time evolution preserves the norm of ) € ﬂOt Therefore
If it vanishes at = = ¢, It vanishes identically and is the
zero element of Hy ;: +- the only null vector in HOt 1S O:

® The completion of Ho,t is the quantum Hilbert space 7.
There is no convenient inclusion of 7! in Y.

o



The Commutative case

N N

# Under time evolution by amount 7, ) becomes
e—iTHw 6—2 (Zo+7)H wo c HO .

where 1) Is a constant function of x( so that :0, vy = 0.
This conceptual difference between coordinate time z
and time translation 7 is crucial for NC spacetime.

# An observable K has to respect the Schrddinger

constraint and leave H()t (and hence #?) invariant. This
means that

[i@xo _H, K} ~0.



The commutative case

-

# Under time translation, 7 in & shifts to 7, + 7 as it
should:

K(T) : +iTH _ e—z(xo+T)HL€—|—z(xo+T)H .

where L is defined by:

K(O) _ e—iﬁone—l—ifonH

# What we have described above leads to conventional
physics. As expected 1 IS not an observable as it does
not commute with i0,, — H:

#0105, — H] = —il .

o |



The commutative case

# In conventional quantum physics, the Hilbert space has
no time-dependence, whereas #} has a label ¢t. This is
puzzling. But the puzzle is easy to resolve: HY is
iIndependent of ¢.

# There Is thus only one Hilbert space which we call H

# Further the observables have no explicit t-dependence
and act on Hj as in standard quantum theory.



The Noncommutative Case

#® The above discussion shows that for guantum theory,
what we need are: (1) a suitable inner product on
Ay (R?); (2) a Schrédinger constraint on A4, (R?); and (3)
a Hamiltonian # and observables which act on the
constrained subspace of A4, (R?).

#® We also require that (1) is compatible with the
self-adjointness of /' and classically real observables.

# We now consider these one by one.



Thesymbol calculus
.

The first inner product is based on symbol calculus. If
a € Ay (R?), we write it as
(= / d°k a(k)e' 1T ethoro
and associate the symbol ag with & where
ag(zo, x1) = /d2k G(k)etFitgthoto
# The symbol is a function on R?. It is NOT the MOYAL

symbol. Using this symbol, we can define a positive map
St by

L Si (&) = /d:z:l ag(t,ry1) . J



TheVoros map

-

#® The second inner product comes from the VOROS map,
based on the coherent states. Let

-

a_i‘o—l—iiﬁl aT_i‘o—iil {CLCLT}—H
/20 9 /20 9 9 Y]

and introduce the coherent states

2 =20+ ix1) = o var (70" —20) 0) .

» The Voros symbol of an operator & € Ay (R?) is the
function oy on R? where

A

ay (xo,x1) = (z| & lz) .

o |



TheVoros map
.

The positive map V4 is then defined by

Vi (@) :/dxl ay (t,x1) .

#® The scalar product is:

(3.8),, =i ()
Hilbert space is obtained only after constraining the

vector states by the noncommutative Schrodinger
equation.

# It can be argued that both these maps lead to equivalent
reSU|tS Bal, trg, Molina, Paulo.

o



The Schrodinger constraint
B | » -

# The noncommutative analogue “i5--" Is

R, . 1
=F)=—-ada
8%0 Qa e

# If the Hamiltonian H is time-independent,

CHE>

® We can write Hamiltonian as B = 4 (:?:f,E) .

» If A has time dependence then e IS not correct, it will
have 2%, iff. But il = 0P + 71, so in the time-dependent

L case we wnte H = H(:):O ,:cl , 151) J



The Schrodinger constraint

o, N

The states constrained by the Schrodinger equation is

7:(9:{1@6./49(]1@2):<i@wo—lﬁ])?ﬁ:0} :

#® The solutions are easy to construct:

b€ Hy —> 1) — e—i(izé%—n)ﬁ(phzﬁ%))%(@l) o

» If H depends on 74%, we can easily generalise the formula

b€ Hyp = b = U (28, 77)x (1)

o |



The Schrodinger constraint

o, N

The states constrained by the Schrodinger equation is

7:(9:{@6./49(]1@2):(i@xo—lﬁ]>zﬁ:0} :

#® The solutions are easy to construct:

& c 7:(6 N @; _ e—i(fg—TI)ﬁ(pl,C%%))% (@1)

» If H depends on 74%, we can easily generalise the formula

€ Hyp = =U (2, 71) ¢ (41)
A

. U (:f:{f,‘g: T exp [—i (/Tx dr i (. @%,151»]

o :@éz



Some observations

-

# An alternative useful form for 1) is

b SV (&, —00) X (1)

/

0
V{(af,—o0) = Texp [—z/ dr i (f + .t P1>]

— 00

where the integral can be defined at the lower limit using
the usual adiabatic cut-off.



Some observations

-

# An alternative useful form for 1) is

b=V (&, —00) X (1)

V (iéz, —oo) = T exp [—z/

— 00

0
dr H (;zg? +or 2k Pl)]

where the integral can be defined at the lower limit using
the usual adiabatic cut-off.

» The Hilbert spaces H; and H; based on scalar products

(.,.)g and (.,.),, are obtained from 7, by completion. Our

basic assumption is that # is self-adjoint in the chosen
scalar product.

o



Some observations

# In the passage from H to H, there is an apparent T
ambiguity. We replaced x( by 2%, but we may be tempted
to replace x( by #{. But it is incorrect to replace x( by 2/
and at the same time z; by 2. Time and space should
NOT commute when § becomes nonzero whereas i/ and
@4 commute.

» Note that i} = —0P; + /! and that 2} behaves much like
the 6 = 0 time x(. Thus If A has time-dependence, its

effect on H is to induce new momentum-dependent terms
leading to nonlocal (“acausal”) interactions.

® \We can construct observables as before and no
complications are encountered.

o |



Examples:

o L N

#® Plane Waves: Let us consider Hy = f—;n Its eigenstates
and eigenvalues are:

?ﬁk — e’ik.@le—’iW(k)fo 7 w(k) k 6 R

# The spectrum of H, is completely conventional while the
noncommutative plane waves too resemble the ordinary
plane waves. But phenomena like beats and interference
show new featuressa.

#® The coincidence of spectra of the free Hamiltonians in
commutative and noncommutative cases is an illustration
of a more general result which we now point out.

o |



A Spectral Map:
-

# For 0 = 0 let the Hamiltonian be: H = 2ma <= 4+ V(21)

with eigenstates 5 fulfilling the Schrodmger constraint:

> ) —iE.C%o

Vg (Zo,21) = pr(T1)e ,Hop = Epp .

# The Hamiltonian H associated to H for 6 # 0 is
p?
H=1.1v
2m V().

# Then H has exactly the same spectrum as H and its
eigenstates ¢ are obtained from v .

B vp = op(@1)e P Hop(i1) = Epp(i1) . N



Conserved Current:

N | R o

#® The existence of a current j, which fulfills the continuity
equation has a particular importance when ¢ = 0. It is this
current which after second quantization couples to
electromagnetism.

#® There iIs such a conserved current also for 6 # 0. It
follows in the usual way from

(B it =~ Rt gl = 0.

#® The noncommutative charge and current density:
1 k[ D 7 2 INE AT
=0, =5 (07 (Pd) - (P*) ¥

L satisfies noncommutative continuity equation. J



.

We can also see how to do perturbative gft’s, our T
approach can be inferred from the work of Doplicher et al.
We require of ¢ that it is a solution of the massive

Klein-Gordon equation: (aolﬁo2 — adP? + /ﬂ) d=0.

#® The plane wave solutions are
D1 = ezkxle—zw(k)xo 7 w(k)2 _ 2 Iu2 .

® So for &, we write:
/Qw(k) ar P ‘|‘ak¢k :

where ), and a] commute with 7, and define harmonic
oscillators: [ak, aH = 2w(k)d(k — k).

o |




o | ]

#® The “free” field ® “coinciding with the Heisenberg field
initially” after time translation by amount 7 using the free

Schrédinger Hamiltonian iy = [ 5%-aa), , becomes

Up(T) (Cf)) — e”HOCI)e_”HO ,

# The interaction Hamiltonian is accordingly
. A\ 4 .
Ay (20) = \: Sy, (U()(T) (<I>) ) S (@4) A>0,

where : : denotes the normal ordering of a;, and a,z.
# The S-matrix S can be worked out as usual.

o |



To conclude......

o, N

The study involved space-time noncommutativity and it is
obvious lot more has to be done.

#® Some of these structures like quantised evolutions have
made their appearance already while studying 2 +1 D
gravity.
| will conclude with a quotation:

® e ... a major revolution in our physical theory must be
waiting in the wings... whatever the nature of this
revolution might be the final theory ...... must have a
fundamentally non-local character.
- Roger Penrose, The Geometric Universe, 1998

o |



FINAL REMARK ...

As we all Know - "Power corrupts".
BUT "PowerPoint corrupts absolutely."

#® The material presented here are prepared using publicly
avallable software Prosper.





