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Motivations.....

Quantum Gravity -at Planck length - must have -
Noncommutative geometric structure - Limit of classical
gravity - emerge - Commutative geometry of spacetime
we know. Just like:

lim
�−→0

Q.Physics = Cl.Physics

Expectation:

lim
Planck length−→0

Non commutative geometry

=
Commutative Geometry



Folklore ..

One should study - Semiclassical Gravity-Or-simple
models - where - such information can be obtained

Black hole Physics - near horizon geometry - specifically
for small blackholes- may exhibit - such - behaviour ?

With modern developements in understanding
microstates of blackhole - one should - relook at the
geometry of - horizon

In most of the studies of noncommutative geometry in
Physics - such structures are introduced from outside as
additional parameter- whereas it should result by virtue of
quantising gravity.



NCG and quantum physics.

Recent times NC Geometry has become popular.
Though it was introduced about 60 years back by Snyder
(PR 1949). Just like introducing � descretises phase
space and reduces the phase space degrees of freedom
introducing a fundamental length will reduce the degrees
of freedom further and hopefully reduce severity of
divergences which plagued the QFT’s then. The original
idea was attributed to Heisenberg himself.

Renormalisation program and its success with QED
made this suggestion unpopular and quickly forgotten.



NCG and quantum physics..

In string theory gets introduced through the background
fields Bµν . This leads in addition to new physics, mixing
of infrared and ultraviolet behaviour of field theories. Seiberg

and Witten, Minwalla etal

The NC geometry can also be studied in a discrete
setting- examples of which are fuzzy spheres. These
serve as alternatives to lattice regularisations with
advantages such as avoidance of fermion doubling. Madore;

Balachandran,trg and Ydri

Nonlinear models such as CP 1 model have interesting
and novel topological behaviour in such spaces. bal and Immirzi,trg

and Harikumar

And many more....



Unitary NC spacetime..

Having seen the history/philosophy of Noncommutative
geometric spacetime we will first study a simpler version
of spacetime with noncommutativity and its implications
for quantum theory.

We will start with 1 + 1 dimensional theory. And look at
the spacetime commutators of the form:

{x̂µ, x̂ν} = iθµνI

Its naively remarked that this leads to non unitary
quantum theory. This is due to incorrect appreciation of
the role of "Time".



NC spacetime...

But the correct statement is if a group of transformations
cannot be implemented on the algebra Aθ

(
R2

)
generated

by x̂µ with our relation then it will not be a symmetry.

We readily see that spacetime translations are
automorphisms of Aθ

(
R2

)
: With U(�a)x̂µ = x̂µ + aµ we

see that,

[U(�a)x̂µ,U(�a)x̂ν ] = iθεµν .

The time-translation automorphism is:

U(τ) := U ((τ, 0))



NC spacetime..

Without the time-translation automorphism, we cannot
formulate conventional quantum physics.

The infinitesimal generators of U(�a) can be obtained from

U(�a) = e−ia0P̂0+ia1P̂1 .

Then we have

P̂0 = −1

θ
ad x̂1 ,

ad x̂µâ ≡ [x̂µ, â] , â ∈ Aθ

(
R

2
)

.



NC spacetime..

Without the time-translation automorphism, we cannot
formulate conventional quantum physics.

The infinitesimal generators of U(�a) can be obtained from

U(�a) = e−ia0P̂0+ia1P̂1 .

Then we have

P̂0 = −1

θ
ad x̂1 , P̂1 = −1

θ
ad x̂0

ad x̂µâ ≡ [x̂µ, â] , â ∈ Aθ

(
R

2
)

.



NC spacetime..

It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism group

Its generators are adĴ3 and adK̂a ,

Ĵ3 =
1

4θ

(
x̂2

0 + x̂2
1

)
,

,

,



NC spacetime..

It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism group

Its generators are adĴ3 and adK̂a ,

Ĵ3 =
1

4θ

(
x̂2

0 + x̂2
1

)
,

K̂1 =
1

4θ
(x̂0x̂1 + x̂1x̂0) ,

,



NC spacetime..

It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism group

Its generators are adĴ3 and adK̂a ,

Ĵ3 =
1

4θ

(
x̂2

0 + x̂2
1

)
,

K̂1 =
1

4θ
(x̂0x̂1 + x̂1x̂0) ,

K̂2 =
1

4θ

(
x̂2

0 − x̂2
1

)
,



NC spacetime..

It is easy to see Parity is NOT an automorphism.

P : [x̂0, x̂1] → − [x̂0, x̂1] , iθI → iθI .

But time reversal IS: due to anti-linearity.

T : iθI → −iθI ,

CPT will be broken! This will have implications for
spin-statistics connection!. (neutrino puzzle?)

The group of area preserving diffeomorphisms also
generates automorphisms of Aθ

(
R

2
)
. This group

includes the Lorentz group Susskind,Jackiw.



NC spacetime..

Causality: It is impossible to localize (the representation
of) “coordinate” time x̂0 in Aθ

(
R

2
)

sharply. This leads to
failure of causality Chaichian et al.

The following important point was emphasised to us by
Doplicher. In quantum mechanics, if p̂ is momentum,
exp(iξp̂) is spatial translation by amount ξ. This ξ is not
the eigenvalue of the position operator x̂. In the same
way, the amount τ of time translation is not “coordinate
time”, the eigenvalue of x̂0. It makes sense to talk about a
state and its translate by U(τ)

Concepts like duration of an experiment for θ = 0 are
expressed using U(τ). They carry over to the
noncommutative case too.



NC spacetime..

With loss of causality, one loses local qft’s as well. As the
best proofs of the spin-statistics connection require
locality.

Precision experiments to test the spin-statistics
connection are possible Capri meeting. If signals for this
violation due to θ �= 0 can be derived, good
phenomenological bounds on |θ| should be possible.



Representation theory..

Observables, states and dynamics of quantum theory are
to be based on the algebra Aθ

(
R

2
)
. Here we develop the

formalism for their construction.

To each α̂ ∈ Aθ

(
R

2
)
, we associate its left and right

regular representations α̂L and α̂R,

α̂Lβ̂ = α̂β̂ , α̂Rβ̂ = β̂α̂ , β̂ ∈ Aθ

(
R

2
)

,

with α̂Lβ̂L =
(
α̂β̂

)L

and α̂Rβ̂R =
(
β̂α̂

)R

. The carrier

space of this representation is Aθ

(
R

2
)

itself.

An “inner”product on Aθ

(
R

2
)

is needed for an eventual
construction of a Hilbert space.



Representation theory..

Consider a map χ : Aθ

(
R

2
)
→ C which is also

positive,i.e.,

χ (α̂∗α̂) ≥ 0 .

Then we can set: 〈
α̂, β̂

〉
= χ

(
α̂∗β̂

)
.

It will be a scalar product if χ (α̂∗α) = 0 implies α̂ = 0. If
that is not the case, it is necessary to eliminate null
vectors.

We illustrate these ideas briefly in the context of the
commutative case, when θ = 0



The Commutative case

The algebra C in the commutative case is
A0

(
R

2
)

= C∞ (R × R),

There is no distinction now between α̂L and α̂R: α̂L = α̂R.

There is a family of positive maps χt of interest obtained
by integrating i ψ in x1 at “time” t:

χt(ψ) =

∫
dx1 ψ(t, x1) ,

We get a family of spaces Ct with a positive-definite
sesquilinear form (. , .)t:

(ψ,ϕ)t =

∫
dx1 ψ∗(t, x1)ϕ(t, x1) .



The Commutative case

Every function α̂ which vanishes at time t is a two-sided
ideal Iθ=0

t = I0
t of C. As elements of Ct, they become null

vectors.

As in the GNS construction Haag, we can quotient by these
vectors and work with Ct/N 0

t .

The completion Ct/N 0
t of Ct/N 0

t in this scalar product
gives a Hilbert space Ĥ0

t

For elements ψ + N 0
t and χ + N 0

t in Ct/N 0
t , the scalar

product is (
ψ + N 0

t , χ + N 0
t

)
t
= (ψ, χ)t .



The Commutative case

The quantum mechanical Hilbert space however is not
Ĥ0

t .

It is constructed in a different way, starting from a
subspace H̃0,t ⊂ Ct which contains only {0} as the null
vector: H̃0,t ∩N 0

t = {0}
Then χt is a good scalar product on H̃0,t and the quantum

mechanical Hilbert space is given by H0
t = H̃0,t, the

completion of H̃0,t.

The subspace H̃0,t depends on the Hamiltonian H and is
chosen as follows.



The Commutative case

Let H be a time-independent Hamiltonian on
commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L2 (R).

We now pick the subspace H̃0,t of Ct by requiring that
vectors in Ct obey the time-dependent Schrödinger
equation:

H̃0,t = {ψ ∈ Ct : (i∂x0
− H) ψ(x0, x1) = 0} .

The operator i∂x0
is not hermitian on all of Ct:

(ψ, i∂x0
χ)t �= (i∂x0

ψ, χ)t for generic ψ, χ ∈ Ct ,



The Commutative case

Let H be a time-independent Hamiltonian on
commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L2 (R).

We now pick the subspace H̃0,t of Ct by requiring that
vectors in Ct obey the time-dependent Schrödinger
equation:

H̃0,t = {ψ ∈ Ct : (i∂x0
− H) ψ(x0, x1) = 0} .

The operator i∂x0
is not hermitian on all of Ct:

(ψ, i∂x0
χ)t =(i∂x0

ψ, χ)t for generic ψ, χ ∈ H̃0,t ,

but on H̃0,t, it fulfills this property:



The Commutative case

We notice since,

ψ(x0 + τ, x1) =
(
e−iτ(i∂x0)ψ

)
(x0, x1)

=
(
e−iτHψ

)
(x0, x1) ,

time evolution preserves the norm of ψ ∈ H̃0,t. Therefore
if it vanishes at x0 = t, it vanishes identically and is the
zero element of H̃0,t: the only null vector in H̃0,t is 0:

The completion of H̃0,t is the quantum Hilbert space H0
t .

There is no convenient inclusion of H0
t in Ĥ0

t .



The Commutative case

Under time evolution by amount τ , ψ becomes

e−iτHψ = e−i(x̂0+τ)Hψ0 ∈ H̃0,t .

where ψ0 is a constant function of x0 so that i∂x0
ψ0 = 0.

This conceptual difference between coordinate time x̂0

and time translation τ is crucial for NC spacetime.

An observable K̂ has to respect the Schrödinger
constraint and leave H̃0,t (and hence H0

t ) invariant. This
means that [

i∂x0
− H, K̂

]
= 0 .



The commutative case

Under time translation, x̂0 in K̂ shifts to x̂0 + τ as it
should:

K̂(τ) = e−iτHK̂e+iτH = e−i(x̂0+τ)H L̂e+i(x̂0+τ)H .

where L̂ is defined by:

K̂(0) = e−ix̂0H L̂e+ix̂0H

What we have described above leads to conventional
physics. As expected x̂0 is not an observable as it does
not commute with i∂x0

− H:

[x̂0, i∂x0
− H] = −iI .



The commutative case

In conventional quantum physics, the Hilbert space has
no time-dependence, whereas H0

t has a label t. This is
puzzling. But the puzzle is easy to resolve: H0

t is
independent of t.

There is thus only one Hilbert space which we call H0

Further the observables have no explicit t-dependence
and act on H0 as in standard quantum theory.



The Noncommutative Case

The above discussion shows that for quantum theory,
what we need are: (1) a suitable inner product on
Aθ

(
R

2
)
; (2) a Schrödinger constraint on Aθ

(
R

2
)
; and (3)

a Hamiltonian Ĥ and observables which act on the
constrained subspace of Aθ

(
R

2
)
.

We also require that (1) is compatible with the
self-adjointness of Ĥ and classically real observables.

We now consider these one by one.



The symbol calculus

The first inner product is based on symbol calculus. If
α̂ ∈ Aθ

(
R

2
)
, we write it as

α̂ =

∫
d2k α̃(k)eik1x̂1eik0x̂0 ,

and associate the symbol αS with α̂ where

αS(x0, x1) =

∫
d2k α̃(k)eik1x1eik0x0 .

The symbol is a function on R
2. It is NOT the MOYAL

symbol. Using this symbol, we can define a positive map
St by

St (α̂) =

∫
dx1 αS(t, x1) .



The Voros map

The second inner product comes from the VOROS map,
based on the coherent states. Let

a =
x̂0 + ix̂1√

2θ
, a† =

x̂0 − ix̂1√
2θ

,
[
a, a†

]
= I ,

and introduce the coherent states

|z = x0 + ix1〉 = e
1√
2θ

(za†−z̄a) |0〉 .

The Voros symbol of an operator α̂ ∈ Aθ

(
R

2
)

is the
function αV on R2 where

αV (x0, x1) = 〈z| α̂ |z〉 .



The Voros map

The positive map Vt is then defined by

Vt (α̂) =

∫
dx1 αV (t, x1) .

The scalar product is:(
α̂, β̂

)
Vt

= Vt

(
α̂∗β̂

)
Hilbert space is obtained only after constraining the
vector states by the noncommutative Schrödinger
equation.

It can be argued that both these maps lead to equivalent
results Bal, trg, Molina, Paulo.



The Schrödinger constraint

The noncommutative analogue “i ∂
∂x0

” is

i
∂

∂x0
≡ P̂0 = −1

θ
ad x̂1 ,

If the Hamiltonian Ĥ is time-independent,

[i∂x0
, Ĥ ] = 0

We can write Hamiltonian as Ĥ = Ĥ
(
x̂L

1 , P̂1

)
.

If Ĥ has time-dependence then • is not correct, it will
have x̂L

0 , x̂R
0 . But x̂L

0 = θP̂1 + x̂R
1 , so in the time-dependent

case we write Ĥ = Ĥ(x̂R
0 , x̂L

1 , P̂1)



The Schrödinger constraint

The states constrained by the Schrödinger equation is

H̃θ =
{

ψ̂ ∈ Aθ

(
R

2
)

:
(
i∂x0

− Ĥ
)

ψ̂ = 0
}

,

The solutions are easy to construct:

ψ̂ ∈ H̃θ =⇒ ψ̂ = e−i(x̂R
0 −τI)Ĥ(P̂1,x̂

L
1 )χ̂ (x̂1) •

If Ĥ depends on x̂R
0 , we can easily generalise the formula

ψ̂ ∈ H̃θ =⇒ ψ̂ = U
(
x̂R

0 , τI

)
χ̂ (x̂1)



The Schrödinger constraint

The states constrained by the Schrödinger equation is

H̃θ =
{

ψ̂ ∈ Aθ

(
R

2
)

:
(
i∂x0

− Ĥ
)

ψ̂ = 0
}

,

The solutions are easy to construct:

ψ̂ ∈ H̃θ =⇒ ψ̂ = e−i(x̂R
0 −τI)Ĥ(P̂1,x̂

L
1 )χ̂ (x̂1)

If Ĥ depends on x̂R
0 , we can easily generalise the formula

ψ̂ ∈ H̃θ =⇒ ψ̂ = U
(
x̂R

0 , τI

)
χ̂ (x̂1)

U
(
x̂R

0 , τI

)
= T exp

[
−i

(∫ x0

τI

dτ Ĥ
(
τ, x̂L

1 , P̂1

))]∣∣∣∣
x0=x̂R

0



Some observations

An alternative useful form for ψ̂ is

ψ̂ = V
(
x̂R

0 ,−∞
)

χ̂ (x̂1)

V
(
x̂R

0 ,−∞
)

= T exp

[
−i

∫ 0

−∞

dτ Ĥ
(
x̂R

0 + τ, x̂L
1 , P̂1

)]
where the integral can be defined at the lower limit using
the usual adiabatic cut-off.



Some observations

An alternative useful form for ψ̂ is

ψ̂ = V
(
x̂R

0 ,−∞
)

χ̂ (x̂1)

V
(
x̂R

0 ,−∞
)

= T exp

[
−i

∫ 0

−∞

dτ Ĥ
(
x̂R

0 + τ, x̂L
1 , P̂1

)]
where the integral can be defined at the lower limit using
the usual adiabatic cut-off.

The Hilbert spaces HS
θ and HV

θ based on scalar products
(., .)S and (., .)V are obtained from H̃θ by completion. Our
basic assumption is that Ĥ is self-adjoint in the chosen
scalar product.



Some observations

In the passage from H to Ĥ, there is an apparent
ambiguity. We replaced x0 by x̂L

0 , but we may be tempted
to replace x0 by x̂R

0 . But it is incorrect to replace x0 by x̂R
0

and at the same time x1 by x̂L
1 . Time and space should

NOT commute when θ becomes nonzero whereas x̂R
0 and

x̂L
1 commute.

Note that x̂L
0 = −θP̂1 + x̂R

0 and that x̂R
0 behaves much like

the θ = 0 time x0. Thus if H has time-dependence, its
effect on Ĥ is to induce new momentum-dependent terms
leading to nonlocal (“acausal”) interactions.

We can construct observables as before and no
complications are encountered.



Examples:

Plane Waves: Let us consider Ĥ0 = P̂ 2

1

2m Its eigenstates
and eigenvalues are:

ψ̂k = eikx̂1e−iω(k)x̂0 , ω(k) =
k2

2m
, k ∈ R .

The spectrum of Ĥ0 is completely conventional while the
noncommutative plane waves too resemble the ordinary
plane waves. But phenomena like beats and interference
show new featuresBal.

The coincidence of spectra of the free Hamiltonians in
commutative and noncommutative cases is an illustration
of a more general result which we now point out.



A Spectral Map:

For θ = 0 let the Hamiltonian be: H = − 1
2m

∂2

∂x2

1

+ V (x̂1)

with eigenstates ψE fulfilling the Schrödinger constraint:

ψE (x̂0, x̂1) = ϕE(x̂1)e
−iEx̂0 , HϕE = EϕE .

The Hamiltonian Ĥ associated to H for θ �= 0 is

Ĥ =
P̂ 2

1

2m
+ V (x̂1) .

Then Ĥ has exactly the same spectrum as H and its
eigenstates ψ̂E are obtained from ψE.

ψ̂E = ϕE(x̂1)e
−iEx̂0 , ĤϕE(x̂1) = EϕE(x̂1) .



Conserved Current:

The existence of a current jλ which fulfills the continuity
equation has a particular importance when θ = 0. It is this
current which after second quantization couples to
electromagnetism.

There is such a conserved current also for θ �= 0. It
follows in the usual way from(

P̂0ψ̂
)∗

− ψ̂∗Ĥ = −P̂0ψ̂
∗ − ψ̂∗Ĥ = 0 .

The noncommutative charge and current density:

ρ̂ = ψ̂∗ψ̂ , ĵ =
1

2m

[
ψ̂∗

(
P̂1ψ̂

)
−

(
P̂1ψ̂

∗
)

ψ̂
]

satisfies noncommutative continuity equation.



QFT.....:

We can also see how to do perturbative qft’s, our
approach can be inferred from the work of Doplicher et al.
We require of Φ̂ that it is a solution of the massive
Klein-Gordon equation:

(
adP̂ 2

0 − adP̂ 2
1 + µ2

)
Φ̂ = 0 .

The plane wave solutions are
φ̂k = eikx̂1e−iω(k)x̂0 , ω(k)2 − k2 = µ2 .

So for Φ̂, we write:

Φ̂ =

∫
dk

2ω(k)

[
akφ̂k + a†kφ̂

†
k

]
,

where ak and a†k commute with x̂µ and define harmonic

oscillators:
[
ak, a

†
k

]
= 2ω(k)δ(k − k′).



QFT.....:

The “free” field Φ̂ “coinciding with the Heisenberg field
initially” after time translation by amount τ using the free
Schrödinger Hamiltonian Ĥ0 =

∫
dk

2ω(k)a
†
kak , becomes

U0(τ)
(
Φ̂

)
= eiτĤ0Φ̂e−iτĤ0 ,

The interaction Hamiltonian is accordingly

ĤI (x0) = λ : Sx0

(
U0(τ)

(
Φ̂

)4
)

: = λ : Sx0+τ

(
Φ̂4

)
: , λ > 0 ,

where : : denotes the normal ordering of ak and a†k.

The S-matrix S can be worked out as usual.



To conclude......

The study involved space-time noncommutativity and it is
obvious lot more has to be done.

Some of these structures like quantised evolutions have
made their appearance already while studying 2 + 1 D
gravity.
I will conclude with a quotation:

• ... a major revolution in our physical theory must be
waiting in the wings... whatever the nature of this
revolution might be the final theory ...... must have a
fundamentally non-local character.

- Roger Penrose, The Geometric Universe, 1998



FINAL REMARK....

As we all Know - "Power corrupts".
BUT "PowerPoint corrupts absolutely."

The material presented here are prepared using publicly
available software Prosper.




