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1 Introduction and Outline

¢ Non-commutative space is a deformation of ordinary space, which
allows generalization of quantum field theory, gauge invariance

[Zb ZQ} =0

e More generally

[Zu; ZV] = elﬂl

e Non-commutative space appears in D-brane wordvolume
field theories when B-field is turned on.

e Field theory on these con-commutative spaces is equivalent to
field theory on commutative spaces, with the product of fields
replaced by a star product.

foi

F %G = 3057 F(2)C(y)lomy

e A choice of Background field breaks the Euclidean symmetries
of space.



e Commutative but non-associative deformations of the coordinate -
algebra can preserve Euclidean Invariance ( or Lorentzian after
a change of signature )

2,2, — ZyZ, =0
| . L
(Z2uZ,)Z)\— Z,(Z,2Z)) = ;%—2'(—%/2)\ + 0, Z,)

e These algebras arise in the context of fuzzy spheres. Fuzzy sphere
SP~1 constructions are based on constructions of Matrices Z,
acting on a subspace of V®", the n-fold tensor product of the
spinor representation, such that

D
> Z,7,=1
p=1

‘I{Zu; Zy} = %) <
(2,2,)Z) — Z,{Z,2Z,) = O(1/n)

The Z, and their symmetric products span an algebra which
approaches the classical algebra of functions on a sphere in the
large n limit, and admits action on so(D) for any n. For D > 2
these deformed algebras are commutative but non-associative.

Zuulm-"us |
Tk Z pri (L) Pry(Ty) - - - ry (Tss)

riry g



e These symmetric products of Z, form the space of fuzzy spheri-
cal harmonics. This space is only a subspace of the space of all
Matrices acting on R,,, which can be singled out by a projection
P. The subspace does not close under Matrix multiplication. It
does close under a new multiplication which is just the Matrix
multiplication followed by the projection. This new multipica
tion-is non-associative but commutative.

e These fuzzy sphere Matrices describe the worldvolumes of D-
branes in string theory. The D-branes carry gauge fields so there
should be gauge theory for these algebras. We will explore gauge
theory for these algebras.

e Fields which are usually functions of commutative and associa-
tive coordinates, will now be functions of these commutative,
non-associative coordinates.

If ¢ is some charged scalar matter, and A, a gauge field, we will
have o S R

D =P+ GuZy+ PuypsLpgpy + - -

Ay = ap+ Gpala + Opajan Zogay + -



OUTLINE

Part I: |
1A. Introduce the algebra A,(R?)

— A deformation of the algebra of polynomial functions.

1B. Covariant Derivative in the commutative, non-associative
context.

— Leibniz Rule for derivatives.

— Associator

Part II :
~ Deformed derivations on A,
— Derivations on A*n(RD)

Part III:

— The Associator

— Examples

~ Use of m3 <> mg to get the general expression

— general forniula for the associator for any product which can
be written in terms of m$ and éxpansions in derivatives.



. Part IV : Generalized gauge fields for non-associative
space-

— The generalized gauge field Au-

— Generalized gauge transformations €
— Covariant field strength |

— Global form of transformations

— Generalized fields as functions on T* M and higher spin fields.

Part V : The associative limit
— The associative limit of the higher spin theory :

— Construction of the action via relation to Wigner space for-
mulation of quantum mechanics.

— Coordinate space form of action

— Embedding a theory+om M in the bigger theory : projection
and gauge fixing ; trace reduction ; Unfolding ;

Part VI :
— Physical Baékground — Fuzzy spheres in Matrix theory

Part VIL:
— Open problems



Part I
IA : The Algebras -

e Recall the algebra of polynomial functions on RY. Let p =
1,---D -

ZIJ'
Ly Dpy = Z(

B112)

Ly Lpnlipg = 2 (n1pops)

Elements of the algebra correspond to symmetric tensors

e There is a degree operator

D(1) =0
D(Z,) =1
D(ZMZNQ) =2

e We can also consider an ideal formed by elements of degree D >
n and form the quotient, to get an algebra of symmetric tensors
of degree less than or equal to n.
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e Algebra : Vector space and a product
m§: A, @A, — A,

The basis of the vector space is the space of symmetric tensors

| 1, Zm Zmuz T Zm---un
Product as given before.

e Now we will keep the same vector space and define a new product

mya
| 1

Zyy-Lyy = Lpypy + ;;5#1#2

Equivalently
1
ma(Zy, ® Zyy) = Zy g + 'T;‘Smm
More generally
\n—s+1
Y RS O\
i=1

® Zyuy - Ly, Will have § terms and 66 terms and some coeffi-
cients which are further suppressed in the i— expansion.

e 1 appearsdoth in the size of the algebra and the structure con-
stants of the algebra. We will be mostly interested in the large
n limit where the 1/n factors in the structure constants of the
algebra will be important but the cutoff on the Z’s will not.

8



e Remark: Non-associativity

(ZM1'Zu2)'Zu3 '" Z#1*(Z#2'Zu3)

-1

== ;;2— [ 5u1u2Zu3 - 5#2N3ZN1 ]

This follows from the equations above.

e A general formula for the product :

Z1u(S1)-Z(S)

Z Z 2T — — :
TICS T2csz|T2|=,T1|n'1l (n | 1S1] — | + IT2])!

~

5( N(Tl) 3 N(TZ) ) ZN(SIUS2'\TﬁUT2')‘

e The product is commutative . Consider exchanging the u-
indices in the set 57 with those in set S5. These indices appear
on the RHS as subscripts on the Z’s or in the delta functions.
Both are symmetric. Therefore the product is unchanged under
the switch, hence commutative.



e It will also be useful to introduce A*,(RP), which has similar
properties and a similar ( somewhat simpler ) form :

— Same underlying vector space, different product m}
- — Commutative and non-associative.
~ Non-associativity vanishes at large n.

— Approaches the classical product at large n.

Zu($y) * Zu(Ss)

| 1 (n)!
- Z Z 220 (n — |Th])

T1CS1 TrCSos|Tel=|T1]

~

5( N(T1> 3 N(TZ) ) Zu(51U52\T1UT2)

10



IB ~ Covariant derivatives
o A scalar field takes values in the algebra of functions, more gen-
erally the deformed algebra.
® e A,(RP)

e We will consider U(1) gauge theory. ® is charged :

| 0P =ie-d
The product is taken in the algebra A, (RP)
e Covariant derivative D,=209,—1iA,.
0,, are derivations : A, — A,
Ay are in Ajp : they have an expansion in the 7, ...,..
We want D,, to be covariant.
0(D,®) = ie - (D,P)
" e Expanding both sides : :
LHS = 6.((0, —1A,) - D)
=10,(e-®) —i(0A,) - P+ A, - (e- D)
= i(Ou€) - @ +ic- (0,P) — i(0A,) - P+ Ay - (e- D)

We assumed Leibniz rule in last line.

RHS of covariance condition :
= 1€.0,® +€.(A,D)
which implies | o
i(0eAy)-@ = i(0,€). 0 + Ay (€.D) — €.(A4,.0)

11



b A, - O = (8“6)-q>~’iAp'(6°(I))+’iE- (A, - D)
= (Oue) - @ —i(e- @) - A, +ic- (D- A,)
= (0ue) - ® —iA(e, @, A,)

We may expect that
Ale,®,A,) = E(e, A,)®

where F is some operator depending on € and A, and acting on
®. One finds

E(e, Ay) = Eale, Ay) - 4@ + Boyo(€, Ay) - 60,00,@ + - -

Successive terms are subleading in the % expansion.

° Rema'rk :

When we do gauge theory for non-commutative but associative
algebras, extra term is a commutator ( which appears even for
U(1) gauge theory )

= 5A, =0, —iA, €

The second operator is just a function of the Z’s

12



e Here, in the non-associative case, we pick up associator instead
of commutator, but the extra operators act not just by multipli-
cation but involve derivatives. |

.5AM = Op€ + Ea(é, Aﬂ)éa + Ea1a2(67 Aﬁ)5a15a2 + e

e A, starts off being just a function of the Z’s but has to be
generalized. -

e We will return to the implications of this later.

- Now we explore 9, — d,, , Leibniz rule ;
and operators related to the associator.
in the context of A,(RP) and A*,(RP).

13



Part IT : Derivations and Deformed Derivations

e §, for @ = 1---D will be defined as maps from A, — A,
Define them on a basis :

Ol g-rops = Z Oap; Z(S\i)

i€S
This is an obvious definition for finite n which yields the ordinary
derivatives in the large m limit. But an easy check shows that
they don’t obey Leibniz rule in general.

5a(Zu1 ) Zuz) = (5aZm) ’ Zm + Zm ) (5aZu2)

5a(Zu1 ' Zu2u3> = 5chm ’ ZMZIJS + Zm ) (5O¥ZM2N3)
1, | |
- "n_z'(&amémm + 5aus5u1u2)

e The correction can be expressed in terms of
—1
-n;(% R 1+ 18 0a)(00; @ 6ay)

e More precisely

: | “"515(504#2%1#3 +6au35u1u2)
= —Lm(8a ® 1+ 18 8a)(0ay ® 0a) (Zpy @ Zyoi)

e We can evaldate on a general pair of elements Z,sy, Zumr) to
obtain a general formula for the deformation of the Leibniz rule.

14



b Zu(s) * Z(T))
= (0aZy(s)) - Zyr) + Zyus) - (6aZyr))

1
——Z( )55a1 b Zu(s) - 5a1 b0 2y
=

)l
+Z n2l Oy "+ * Oy Zp(s) * O 5a1 0oy Zy(T)
=1

e In other words

11
O - Mg = Mg+ (04 ®1+1®5a)§: )

=0

L 60 ® 8y O
e There is a deformed derivation rule. described by a co-product
on the algebra (U) of derivatixves
A U)— U) e M)
REMARKS

e 1. Proving the desired deformed derivation rule uses some inter-
esting combinatoric identities.

5—‘: N+1+2A) (N +24)!
— EWN+1+A+k)!  A(N+ A)

e 2. This modified Leibniz rule will have implications for the gauge
transformations of A, because

15



Oal€- @) = (0a€) - P+ €- (6,@) + - -

. 3. Another way we might think of characterizing the failure of
0. from being a derivation

1
5a 1 ""52 A
(+nﬂ+ |

does not work

e 4. Such co-products occur in the context of quantum groups. Lie
algebra elements act on the algebra of functions on the group as
derivations. These functions form representations of the Lie al-
gebra. Products of these functions are related to tensor products

“of representations of theskie algebra. The Leibniz rule for the
“action of derivatives on products of functions is related to the
standard co-product which gives the action of Lie algebra on
tensor products of representations.

Take su(2) Lie algebra for example :
A(J ) =J:®01+1Q J4
In the case of the q-deformed su(2) we have

T A(J+) _ J+ ® e}.),J3/2 4+ e—h.]3/2 ® J+

e 5. Now we knowvfrom

a) quantum groups acting on non-commutative spaces

16



b) Seiberg-Witten map in non-commutative Yang Mills

that, often, the same physics can be described by two different
kinds of products, which are related :

E.g in Seiberg-Witten map

axb=my(a®Db)

—_ mg‘e'lauya‘j,@ay

my = mg.elmon®%

'Here SW show that both m3 and 77 describe the same physics.

i.e the DBI action written in terms of closed string parametrs
(9, B, 9s)

/ﬁDBzzf\/g+B+F

and the Non-commutative DBI written in terms of the open
string parameters (G, ©, Gs).

/ﬁpB[=/VG+F

17



e For an appropriate map A(A) A, A) such that

A(A) + 65A(A) = A(A + 6,A)
there is an equivalence of

Lppr = ﬁsz + total der. + O(@E)

e In the context of quantum groups acting on non-commutative
spaces, one can also consider different products related by a Drin-
feld twist.

!

where F' lives in Uy @ U,.

» This suggests that we should look for a different product related
to the original one by similar formulas, such that, &, are deriva-
tioms with respect to the new product.

We try

m;z E m2-CI-5a1"'5al®5a1"'6al
l

This does not work.

18



But a slight generalization works.

. =MD
m2=z ( ).mg.(éal'--dal oy * Oay)

2
z

where D is the degree operator and hy(D) = MO-Ty1 D ,), With this
h, the derivation property holds

0a My =m5 (0 ®1+1®6,)

Proof uses the combinatoric identity :
P p
n—s+1 n— 8\
E hi(s — 1 E
1=0 & )< p—1 ) » hils) (P - Z>

)

The star product is giverr bysthe formula, :

]

Z_#(Sl) * ZN(SQ)

1 (n)!
= Z Z R0l (n— [T1])!

T1CS1 ToCSos|Tol=|T1]

O0( (), w(T2)) Zuysuspmumy)

19



~ Following from work with G. Travaglini ( unpublished )

o This has a nice expression for exponentials, which can be defined
as

ik Zy _ N L
eirlr = Z "n;jkﬂl " ‘km(zm"‘ﬂm) |

e There is a nice action of the derivations

§ocitnZn = ; ka eikuZu
e The star product of exponentials takes the form :

eiklpzp * e'ik2vZV — ( m@k ko)™ e ‘i\(klp—!—kg#)zﬂ
Z_( )" (0 -k) min — 'm)'e
m=0
ALY

e This is a product of the form

eFnlu y giblyv — f (k1.k2)ei(k1“+k2”)’z“

e In the large n limit, it looks a natural generalization of the star
product that appears in non-commutative gauge theory, except
that there is scalar rather than a tensor deformstion parameter.

. 2(ky.k)2  43(ky.ko)®
s 6_,/k1_k2__7 (21n 2)” (31222) . ()
| (k)
g~ Thik2 (1 _ v (kke)® p. )
2n

20



Part IV : The Associator and Related Operators

e For an arbitrary triple of elements ®;, ®,, ®3, we want o write

= ($1D;) D3 — ©1(P2P3)
= E(®1, P3)®;
= F((I)l, @2)@3‘

e To obtain F and F operators we observe that m3 ( and my )
are related to a simple commutative, associative product m§ —
the concatenation product.

C —
mz(Zm---us ® ZV1"'Vt) = Zm'"usVr"Vt
This product m$ is commutative and associative.

ZmZk' n_ ‘ Z 60‘1 ) ak 5041'”50%

Qaj--ap
This is of the form
m; - mgf(éa & 504)
where f(z) = (1 + ).

e We can invert this relation and write an expression for m3 in
terms of m3.

21



-
my L0 )

D (n+1-1)

_ gl(l ) ( _)

m? Z Sy -+ Oy ® Oy * -+ by

a1+

e We also need to know how the commute strings of partial deriva-
tives through the multiplication. For a single derivative, we have
Leibniz rule |

Sama =m5(6, ® 1+ 1® 6s)

Define a map A from the space of multiple derivatives of Ay, (RD)
to the tensor product of two copies of this space. That is

ABus) = Y Ouw)®0uw)
UUVz—-S |

VAR,
AL

Consequently, we can write 8,(sym3 = m3 A(9y(s)) when acting
on A*(RP) ® A%(RP). The same equation also holds when we
replace m} with m$, since 9, also obeys the Leibnitz rule with
respect to ms.

e Consider the product A * (B * C) for any three functions on
AL (RP),

A% (BxC)=m3{(1®@m3)(A® B®C)
= m (0, 0")(1®ms)f(1®8,®0")(A®B® ()
= mi(1@m§)((1®A)f(0,®0")f1®0, ® N ARB®C),

which can be rearranged using associativity of m$§ to give

22



mg [0, ® 8*)(m3® 1) (8, ® 8)
(1®A)f(8,®07)f1®8, ) A®B®C)
= m;(m; @ 1)(A®1)f (8, ®8")f (8, ® &)
(1®2)f(6,®0)) x f1®8, ®°)(A®BRC).

'This manipulation has expressed the product A * (B x ) in
terms of a sum of products involving derivatives of the functions
A, B and C' (where the *-multiplication of the first two entries
is done first and so is similar in structure to (A * B) * C). Thus
the F operator can be read off from

F(A,B)C = my(m; @ 1 - (A®1)f (8, ©0*))f (8, ®8")
X(1®A)f(0,00)f1®8, ) (AR B®C) .
in terms of derivatives acting on C. The analogous derivative ex-

pansion of the E operator. immediately follows, since E(A, B) =
F(A, B) — F(B, A).

Using these ingredients, we can express the associator explicitly
in terms of the operators F and F' as desired.

E(q)l, @3)@2 = Ea((-ply @3)*5Q®Q+Eala2(q)1, q)3)*5a15a2®2+' <

The E, F' operators can be constructed generally for any product
mg written in terms of the associative m§ using an expansion in
0o ® 0. The components E,,q,.. are written in terms of star
products of derivatives acting on P71, ®s.

23



Part IV : Generalized gauge fields, gauge transfor
mations and Field Strengths

e Since the coordinate dependent gauge fields pick up derivative
- corrections under gauge transformations

6A, = 0,6+ Eol€, Ap)da + Eoyay(€, Ap)ayba, + - - -

e We should generalize the notion of gauge fields

| Au = Ay + Apada + Apoyagloy Oy + - -

e This suggests that gauge parameters should also be generalized

€ = €+ €30 + €ayay00y 0y + - -

e Analogs of the operators F/, F' defined before can be extended to
these more general objects having an expansion in derivatives.

II

B(AC) — A(BC)
(AB)C — A(BC)

(4,
(4,

These can be computed in terms of the E, F' defined before,
using in addition the commutators of 6, with the coefficients

A

s >
S

B)C
B)C

)C
)C

24



Echie) = Fae)—FGA)

— A'(QB) <+ CA'Q)B

FEANC = —BY) + B A<
FaB)y e - EGMC

- B(AC> . A(Ré)

= L@ C



D A 1 0.0
B(AC)=) 7B 5Oy .- Oy (AP P18, ...05,C)
st

= }:S, t'z< )B"‘l @ (D, O AP PGy, . aasaﬁl...aﬁtc')

_ Z o Z ( ) Bal"‘asaal--8akAﬂ1”"6‘)aak+1--'30158:31""aﬁtc
+ F( B 9, aak AP Bt)aak.u 3a33ﬁ1 aﬁtc )

e This gives B(AC’) as a sum of operators on C. Same thing
can be done for B(AC). Hence we can calculate E(A,B)C =
B(AC) — A(BC) to get something of the form

o0

CB(A,B) = 30 (BP(A, B))(a) * OB

s-O

Where the components L#1-ks are written in terms of multlph—
cation by products of derivatives of the components of A B and
the F-operators with arguments which are derivatives of these
components.

e Gauge transformations can be defined in terms of these.

00 = éd
5‘;1# = [6ﬂaé] - E(Auaé)
5D = B(Dpd)

FIW = [5u7 AV] + [51/7 A,U] + E(AW Au)
E(F,,,¢

D
o
S
I

25



¢ These formulas look véry much like those for a theory on non-
commutative theory or for non-abelian theory on commutative
space, with E(A, B) playing the role of [A,B]. In a sense
E(A,B)C = (A(BC)) — (B(AC)) is indeed the “commuta-
tor” in the space of linear operators, if the action of operator
are understood with a specified choice of brackets written from
the right and outwards. The fact that the transformation of
F,, takes the usual form because the “Jacobi identity” holds for
E , and follows from the usual manipulations leading to Jacobi
identity, but with brackets inserted from the right ourward.

e We can also exponentiate the action of the gauge transformation
parameter, and define the action of the exponential with a choice
of brackets ( “right outwards” ).

g® = f® =  + () + %(é(é@)) + %v(e(g(ap))) 4.

e The formulae for global ‘ransformations look similar to non-
abelian gauge transformations, withcare taken to correctly order
the brackets :

| D@ — §(Du(g7' @),

Fo® — g (F/W(Q~1 ),

e This theory can be viewed as naturally defined on a deformation
of T*RP ( the co-tangent bundle of the non-associative deforma-
tion of RP ) and is a theory of higher spin fields on ( the defor-
mation of ) RY. We can take a limit where the non-associativity
goes to zero and we have a theory which is non-trivial due to the
non-vanishing commutators [8,, A(Z)]

26



Part V : The Associative limit

e In the associative limit, we have the standard algbera of func-
tions on R? but the fields include higher spin gauge fields A%l
and higher spin gauge parameters €*1®s. The generalized gauge
fields Au are functions of Z* and.0,. The Z# are coordinates on
RP and can be viewed as position variables in quartum mechan-
ics. The derivatives are momentum operators since P, = —40,,.

e It is useful to use the map between operators A(Z*, P,) and
functions A(z*, p,) which appears in the ( Wigner-Weyl-Moyal
) phase space formulation of quantum mechanics. This allows
us to write explicit actions which are invariant under the gauge
transformations. The map is : |

A ) = [ dydadzdp A, plesplign(2*~)eapli* (Paps)

It is a variation on the more familiar operator-function map
which uses the Weyl-ordering ( symmetrized operators ).

e There is an inverse relation taking functions to normal-ordered
operators A of the type considered before.

" 1 - '
A(z,p) = (27D / dy dq exp(i (gu2" + y"pu))  (2)
Tr (exp(——i quZ*) A exp(—i y“Pp)> :
o Traces of operators are related to integrals of the functions.
(A2 P) = [ ddpAen) (9

27



¢ As in non-commutative gauge theory, gauge invariant actionsate
traces of operators which can be mapped to integrals over z, p

Tr(ﬁuuﬁuu) = /dZ fNV,(zap%?:#Vl(z’p) (4)

e B! = 10 0 \[L 2N Lo
where F,, = exp (23_%,i app) F,. where F,, is the function

obatined from the operator F' by the equation given before.

e After integrating out the momentum variables, we are left with a
coordinate space action involving the higher spin fields integrated
over coordinate space.

e This associative theory based on the phase space is in fact ob-
tained from ordinary non-commutative theory for T*R” by a
projection. Note that the theory described here contains fields
similar to this non-commutative theory but only half the number

- of covariant derivatives,,[n the non-commutative theory, we can
consider “large” field solutions to the equations of motion such
that half the covariant derivatives vanish. Constraining fluctu-
ations around these solutions to respect the vanishing of these
derivatives is a gauge invariant condition.

28
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e In this associative limit, there are two ways to embed an ordinary '
abelian theory on R? in the higher spin theory.

One is simply to set all the higher spin gauge fields to zero and
‘gauge parameters to zero. This is consistent with the gauge
- transformations of the higher spin theory.

The other is to restrict the higher spin compbnents to equal
derivatives of the leading components

A#;al...as : 6&16a2 ¢ 5asAu
‘ eal...as = 5a15a2 te 6as€

e For this choice of Aﬂ we check that the field strength takes the
abelian form

B = 6,4, — 8,4,

and gauge transformation in the higher spin theory for the above
gauge parameters is the same as performing the gauge transfor-
mation in the abelian theory and then mapping by the above
rule.

29



e It remains to extend these embeddings to the non-associative™
case. For the trivial embedding : We attempt to use the extra
gauge parameters to restrict the gauge fields to be just coordinate-
dependent, i.e we want to set A,q, Aypa,, -+ to zero.

e This leads to a gauge transformation rule for A, which depends
on 6, €a€a1a2 t e

0eAy = 0u€ — G€qy * 0oy Ay + - -+
and some constraints that have to be satisfied by the

(6’ €a; €ayans )

_iEﬁ1<57 Au) - iF51(6017 501‘4#) +--=0

from Vanishing of first.degivative corrections

—1Ep 5, (€, Ay) — iFp,p,(€ay, 6y Ap) + -+ =0

from Vanishing of second derivative corrections.

If a solution exists to this system, which approaches the solution
€# 0,0 =0;€40, =0--+) at n =00

it would give a non-trivial embedding of the U(1) inside the

large gauge group generated by (e,¢€,,- ) as we turn on the
non-associativity parameter 1/n.
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Part VI : The Physical Background

e Given these commutative non-associative deformations of the
algebra of functions on RP we can also define deformations of
the algebra of functions on SP1.

e Impose constraints such as
Zpp=C

e The Yang-Mills action for the sphere can be written in terms of
these Cartesian coordinates of the embedding space. Derivatives
8, have to be projected on the sphere. Such projections can also

be defined for these deformed algebras, and allows us to write
deformations of the Yang-Mills action on the sphere.

e The existence of such Yang Mills theories on commutative/non-
asssociative spheres is expected from “Matrix Theory”

In Matrix Theory one starts with a non-abelian U(N) action for
zero-branes

TR / dt (DD%7+) [+
a,b

The equations of motion admit solutions where the ®; are set
equal to matrices obeying an SU(2) relations

q)iNXz'
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[Xi, Xj] = ieiju Xk
o (N?-=1)
D

?

e These solutions can be interpreted in terms of “fuzzy 2-spheres”
— The collection of zero branes form spherical 2-branes ( Myers
effect ) |

e An important ingredient in this interpretation is that the alge-
bra of functions on S? can be truncated in an SO(3) covariant
manner to give a Matrix algebra of size V.

e This is not possible with higher spheres $*, 5% etc. While 5?2 is
a co-adjoint orbit the other spheres are not.

e However S, for higher=k: are bases of a fibration with total
space SO(2k + 1)/U(k) — which are co-adjoint orbits — and do
admit Matrix approximations.

e There is a projection of these Matrix approximations of SO(2k+
1)/U(k) to give “fuzzy higher spheres”. The algebra structure
on these fuzzy higher spheres is commutative and non-associative
of the sort we have discussed.

e These higher fuzzy spheres play a role in the construction of
higher sphezical 4, 6- etc. branes from 0-branes. All these branes
carry gauge fields. |

e So we expect gauge theory on these commutative, non-associative
algebras to exist.
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Open problems and Directions

¢ Extending embeddings of abelian theory on M to theory on TM
in the non-associative case.

e Lesson : Theories with infinitely many higher spin fields. Is the
same true for Vassiliev theories in ADS space 7 Application to
ADS/CFT —deformations away from symmetric point 7

e The “Matrix Theory” applications suggest that there should be a
duality between non-abelian theories on the comm/nass S?* and
‘abelian theories on non-commutative SO(2k+1)/U(k). Explicit
construction of the duality is an important direction.

e The Matrix algebras with SO(5) symmetry underlving the fuzzy
spheres have applications in condensed matter physics. Is there
a role for the ( gauge ) field theories on non-associative algebras .
in this context ? Higher spins 7 |
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