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I. Introduction to the quantum Hall plateau transition: one of the last holes in 
our understanding of the 2D QHE

II. Percolation and the classical limit

III. Noncommutativity and the quantum case

IV. Hidden conservation laws & consequences

V. Possible extensions: higher dimensions & spin
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Why worry about disorder, i.e., randomness in the single-
electron potential V(x)?

1. (Negative answer) The experimental observation of the quantum Hall effect 
requires breaking of Galilean invariance: otherwise the electric field vanishes 
in a properly chosen frame, and there are no Hall plateaus. 

2. (Positive answers) The disorder-driven transition between Hall plateaus is (a) 
the best experimental demonstration of universal scaling at a quantum phase 
transition;

3. (b) the natural generalization to a noncommutative space of one of the best 
understood classical geometric critical points, 2D percolation.
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Anomalous dimensions in condensed matter
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Experiment : β = 0.322 ± 0.005
Theory :         β = 0.325 ± 0.002
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Classical and quantum phase transitions
I. Classical transitions are driven by 

competition between energy and 
entropy; at sufficiently low 
temperature, the system goes into 
an ordered state.

II. Near a critical point, there are 
strong thermal fluctuations on 
large length scales (critical 
opalescence).  On these length 
scales, classical physics applies.

I. Quantum phase transitions are driven 
by a nonthermal coupling (doping, 
magnetic field, chemical potential, etc.) 
and exist at zero temperature.

II. Near a quantum critical point, there are 
strong quantum fluctuations on large 
length scales.  Quantum mechanics 
remains essential.
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Example: disorder-driven localization

There can be a phase transition even in a noninteracting system, driven by quantum 
interference.  There are still electronic states at the Fermi level, but they are localized
and carry no current at low temperature.

Consider the Schrodinger equation for one electron in a random potential.

Low-energy bound state

High-energy extended (scattering) state
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The mobility edge

The preceding picture of high-energy extended states and low-energy localized 
states is essentially correct in 3D.  Furthermore, there is one energy (the 
“mobility edge”) which separates the two classes.

E
extended

localized

Why?

Mott’s argument:
Suppose there were both extended and 
localized states at the same energy.

This is unstable to any small perturbation: 
since the energy denominator is zero, the 
localized state and extended state will mix, 
leaving two extended states.
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Importance of dimensionality for Anderson localization
As the Fermi level nears the mobility edge, there should be universal scaling of the 
localization length, conductivity, and other quantities.

The localization of free electrons by a random potential is called Anderson 
localization.  In one and two dimensions, there is no mobility edge: all states are 
localized by even a weak random potential.  How is this even possible?

An electron in an extended state does a random walk:

It turns out that an accessible delocalization transition occurs for 2D electrons in a magnetic field,
which will be discussed later.  The magnetic field spoils the interference mentioned above.

A random walk in 3D of length N returns to an impurity “almost never”.
A random walk in 2D of length N returns to an impurity log N times.
A random walk in 1D of length N returns to an impurity sqrt(N) times.

All these returns effectively amplify even a weak impurity potential, in 1D and 2D, because 
of constructive interference.
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Temperature scaling of transition width

H. P. Wei et al., PRL 1989



ICTP, 2 March 2005

Random level surfaces

Consider the following 2D classical model of the quantum Hall phase 
transition:

An electron moves in a random 2D electric potential and strong 
magnetic field.

The electron makes fast circular orbits in the magnetic field; its “drift 
velocity” is along E x B and hence along a level surface of the random 
potential.

What are the statistical properties of “random level surfaces”, contours 
of constant energy in a random potential? (Trugman)

Some intuition: consider a contour map of the Earth’s crust.
Contours at high elevation (8000m) are small.
Contours at sea level can be large (continental coastlines).
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Contour maps and criticality

Suppose the random potential is uniformly distributed
over [-1,1].

Then the typical contour size as a function of energy, ξ(E), is small for E 
near 1 (peaks) or -1 (valleys), but large as E nears 0.

To understand this divergence,
make a lattice model:

The electron of energy E moves
on edges of the lattice subject to the 
constraint that faces to the left (right) 
have potential higher (lower) than E.
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Percolation hulls and the classical limit

Using the lattice model, one can show that random level surfaces at criticality 
are equivalent to percolation hulls.

Idea of percolation, a geometrical critical phenomenon: Randomly color a 
fraction p of faces red.  At some p, there appears an infinitely large connected 
cluster of red faces (the red faces “percolate”).  This cluster’s boundary is a 
percolation hull.

This cluster is fractal: most of its fractal dimensions and other properties are 
known via properties of minimal models in conformal field theory (e.g., q->1 
q-state Potts model).

The critical value of p corresponds to E = 0, and the mean cluster radius 
diverges as

ξ(E) ~ 1
(E − Ec )4 / 3
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Origin of noncommutative geometry

The classical electron motion in a magnetic field 
conserves the x and y coordinates of the guiding-
center.

However, these two conserved quantities do not 
commute (the Poisson bracket or commutator is 
nonzero).

Recall that in our derivation of classical 
percolation, we essentially followed the guiding-
center motion along level surfaces.

Claim: For a correct quantum-mechanical 
description, it is sufficient to redefine the space 
in which the classical percolation theory lives.

(xc,yc)
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2D electrons in a magnetic field and random potential

E

D(E)

Clean spectrum: degenerate Landau levels spaced by 
cyclotron energy.

Disorder pushes some weight into localized states at 
other energies.

ξ(E) ~ 1
(E − Ec )υ

E

D(E)
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The quantum phase transition between Hall plateaus:
experimental summary

∆B ~ T zυ

ξ(E) ~ 1
(E − Ec )υ

ξτ ~ ξ z

Continuous quantum phase transitions, like their classical 
analogues, are believed to contain universal scaling laws 
near criticality.

The transitions between neighboring quantum Hall 
plateaus and between the lowest Hall plateau and the 
insulator are some of the best studied examples of such 
QPT’s.

The power-law scaling of the transition width at very low 
samples measures a combination of critical exponents ν
and z:

Another measurement can be used to extract a different 
combination of ν and z.

In a few samples, there is scaling over two decades in 
temperature consistent with ν  approximately 2.3 and z
approximately 1.  This value for ν  is consistent with 
numerical results on noninteracting models of the 
transition, and considerable analytic effort has been 
expended on such models.

In many other samples, however, scaling of the plateau 
width does not hold to the lowest temperatures or is not 
consistent with these values…we’ll see a possible 
reason for this later.

For now, focus on the plateau transition without 
interactions as the most experimentally relevant case of 
a quantum interference phase transition without 
interactions.

For more background see Sondhi, Girvin, Carini, and 
Shahar, RMP 69, 315 (1997).
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Localization and the Liouvillian, part I

R2 = ψ(x) 2(x − x0∫ )2 dx

R2(t) ~ Dt

Test for presence of extended states in a disordered 
electronic system:
(Anderson, 1958)
1. Start with a lattice tight-binding model.

2. Add an electron at one site and follow the evolution of 
the electron density over time.

3. If there are extended states in the system, then 
“typically” the electron density will diffuse:

4. With no extended states (all eigenstates fall off 
exponentially beyond some region), the mean squared 
radius approaches a constant.

There is another possibility, however, which occurs in 
two dimensions with a magnetic field (the quantum Hall 
universality class).

Assume the magnetic field is strong and concentrate on 
the lowest Landau level.

Start a maximally localized wave packet at t=0.  The 
mean squared displacement increases with a power law 
slower than diffusion:

R2(t) ~ t
1− 1

2υ
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Numerics for mean squared displacement in LLL
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Localization and the Liouvillian, part II

Previously we claimed that the mean squared 
displacement of a wave packet in the LLL satisfied

R2(t) ~ t
1− 1

2υ

The quantity ν appearing in the exponent is the same as 
appears in the conventional localization length scaling 
law

ξ(E) ~ 1
(E − Ec )υ

(The equality of exponents can be understood by 
assuming that the starting wave packet projects 
equally onto states of all energies in the LLL, and 
that propagation at each energy is diffusive until the 
localization length is reached.)

Hence ν can be obtained
• using only the density, not the 
wavefunction;
• without studying states at specific energy, 
only integrated over energy.

The Liouvillian formalism (Sinova, Meden, 
Girvin 1999) is a means to calculate 
disorder-averaged density correlations and 
hence obtain ν and possibly other critical 
properties.
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Dynamics in the lowest Landau level

• Nonlocality:  The most localized state in the LLL has 
spread of order the magnetic length

• Moving an electron around a closed path generates an 
Aharonov-Bohm phase equal to the magnetic flux 
through the path.

• The Fourier components of the LLL-projected electron 
density are proportional to the “magnetic translation 
operators” (Girvin and Jach, 1984):

• Main conclusion: the equations of motion for the 
electron density are closed: knowing the electron density 
ρ(x) at one time determines it for all times, for the 
noninteracting Hamiltonian

l = eB /hc

ρ q = eiq ⋅r = e−q 2l 2 / 4τ q

τ q

τ p

τ−q

τ−pΦ

[τ p ,τ q ] = 2i sin( l2 ( pxqy − qx py ) /2)

H = V−q
q
∑ ρ q

d
dt

ρ q = Lq ′ q ρ ′ q 
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Effective theory in noncommutative space

After some algebra, one can obtain a simple field theory which if solved would 
contain the exact critical exponents:
in terms of Fourier components, the propagator that contains the anomalous 
dimension we would like to calculate is

In real space this sine (the “star product” in a noncommutative space) corresponds 
to higher and higher derivatives, so the theory is nonlocal.
Linearizing the sine gives a field-theory representation of classical percolation.  
Standard practice is to integrate out the V fields to give an interacting clean 
problem with normal and Grassmann fields (the ``supersymmetry trick’’).

Hence the quantum Hall universality class is the generalization of classical critical 
percolation to a 2D noncommutative space.
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Outline of remainder

So far everything looks quite promising: we have obtained a reasonably compact 
noncommutative field theory with normal and Grassmann variables that describes 
the plateau transition.  The validity of this description can be verified by numerics.

Already this is something of an accomplishment: the intuitive notion (Trugman et 
al) that quantum tunneling modifies classical percolation can be put on solid 
theoretical footing.

It seems that the final goal is in sight: a controlled expansion of the anomalous 
dimension of the plateau transition should just be found by standard expansion 
techniques (e.g., 1/N) applied to this theory.

However, this theory for the density operators has an unusual class of symmetries 
that seem to frustrate standard approaches.
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Extra conservation laws in the LLL
The ordinary Schrodinger equation is unitary and 
hence conserves the norm of the wavefunction (the 
total probability to find an electron somewhere in the 
system).

After projection to the LLL, there is also a closed 
unitary evolution of the density operators:

d
dt

τ q = ˜ L q ′ q τ ′ q , ˜ L q ′ q = −( ˜ L ′ q q )*

⇒
d
dt

τ q τ−q
q
∑ = dC

dt
= 0

C ≡ τ q τ−q =
q
∑ eq 2l 2 / 2 ρ q ρ −q

q
∑

Hence, in addition to particle number and energy, 
there is an additional conservation law in the LLL, 
independent of the realization of disorder.

The conserved quantity measures the variation in the 
density, and is minimized by the uniform density 
state.

This is only the first of a series of many conservation 
laws.  Think of the terms in this sum as paths from 0 
to q and back again.  With a proper phase and 
numerical factor, one can construct ternary, 
quaternary, etc. conservation laws (involving 6, 8, …
electron operators).
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Summary of plateau transition results

1. The picture of the quantum Hall plateau transition as a noncommutative
generalization of classical percolation can be made precise in a
“Liouvillian” theory based on the density operators.

2. The analysis of the resulting theory is made more difficult by the 
existence of an infinite (but incomplete) number of conservation laws.  
These are consistent with the notion that for N states in the LLL, there are 
N2 magnetic translation operators.

3. In simpler models, the existence of an infinite but incomplete symmetry is 
known to have dramatic consequences: an example is the reduction of 
dimensionality in certain lattice Ising-like models from d to d-n, when 
there is an n-dimensional infinite set of conservation laws.

References: J. Sinova, V. Meden, and S. M. Girvin, PRB 2000; JEM, J. 
Sinova, and A. Zee, PRL 2001; JEM, Nucl. Phys. B 2004
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What about higher dimensions? (a future direction)

1. The 4D QHE realizes a different universality class of mesoscopic
physics (symplectic rather than unitary), which should have physical 
consequences.  Also the ``natural’’ objects for a localization theory may 
be membranes.

2. Physics on a conventional quantum Hall plateau is rather robust to 
disorder, because the chiral nature of edge states (boundary fermions) 
makes them resistant to backscattering.  The spin Hall effect, which is a 
3D cousin of the 4D QHE, is protected from disorder in a more subtle 
way; 

3. Experiments can distinguish between extrinsic and intrinsic
contributions to the spin QHE (tomorrow morning).  In the ordinary QH 
case, the extrinsic contribution is 0; it can be nonzero in the SQHE 
(Dya’konov-Perel’).  However, at least one recent experiment is 
interpreted as dominated by the intrinsic part.
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Importance of dimensionality in 
QPT’s

Jack Sowards

“He is intelligent, but not experienced.  His 
pattern indicates two-dimensional thinking.”


