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• SUSY Yang-Mills and the running of θ

– Duality and Modular Symmetry of N = 2 SUSY Yang-Mills

– Callan-Symanzik β-functions and modular forms

• The Quantum Hall Effect (QHE)

– Law of Corresponding States and Modular Symmetry in the QHE

– Scaling and Crossover

– Selection Rule, Semi-circle Law

• Hierarchies in 2-d bosonic systems
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N = 2 SUSY QCD: SU(2)

• Field content (adjoint rep.): Aµ, ψ1, ψ2 (Weyl), φ (complex)

• Action:

S =
∫

dx4
{(

− 1
4g2 tr(FµνFµν) + θ

32π2 εµνρσtr(FµνFρσ)
)

+ 1
g2 tr

(
(Dµφ)† Dµφ − 1

2 [φ†, φ]2
)

+ · · ·
}

• Only two independent couplings: g and θ.

• Degenerate vacua parameterised by < φ >, (or u = 1
2 tr < φ2 >).

SU(2) broken to U(1), < φ > gives gauge fields a mass.

Brian Dolan – NUIM ICTP, 3rd March 2005

Duality in Yang-Mills and the Quantum Hall Effect 3

Duality and the Modular Group

• Duality: E → B and B → −E is a symmetry of the vacuum Maxwell

equations.

• This is not a symmetry when charges are included unless magnetic

monopoles are introduced, g → gD = 4π/g, (Dirac).

• For QCD, when the vacuum parameter θ is included, this generalises to

τ → −1/τ τ := θ
2π + 4πi

g2 (Imτ > 0).

• The Modular Group, Γ(1), is the infinite discrete group of transformations,

τ → aτ+b
cτ+d , with a, b, c and d integral and ad − bc = 1. This generalises

τ → −1/τ , (Witten).
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• Elements of Γ(1) preserve Imτ > 0 and can be represented by

2 × 2 matrices γ =
(

a b

c d

)
with a, b, c and d integral and det(γ) = 1.

The modular group Γ(1) is the double cover of Sl(2,Z).

• Γ(1) is generated by

γ =
(

1 1
0 1

)
and γ =

(
0 1
−1 0

)
τ → τ + 1 τ → −1/τ .

• The dual theory has τD = −1/τ .
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Modular Symmetry of N = 2

SUSY Yang-Mills

Low energy SUSY effective action is symmetric under τ → aτ+b
cτ+d

with a, b, c and d integers, ad − bc = 1 and both b and c even.

(Seiberg+Witten).

This is a sub-group Γ(2) ⊂ Γ(1) generated by

γ =
(

1 2
0 1

)
τ → τ + 2 and γ =

(
1 0
2 1

)
τ → τ

2τ+1 .

• Weak coupling (ultra-violet, u → ∞, τ → i∞) gluons and squarks are

relevant degrees of freedom.

• Strong coupling (infra-red, u → 1, τ → 0, τD → i∞) gluons and

monopoles are relevant degrees of freedom.
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Callan-Symanzik β-functions

• u = (1/2)tr < φ2 > is a mass2. Given τ(u) define

β = −(u − 1) dτ
d(u−1) ≈ −u dτ

du for large u.

β(τ) = − i
π

1
ϑ3(τ)4

with ϑ3(τ) :=
∑∞

n=0 eiπn2τ (Jacobi ϑ-function).

• β(τ) is a Modular Form (of weight −2):

β(γ(τ)) =
(

1
cτ+d

)2

β(τ)
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β(τ) = −(u− 1) dτ
d(u−1)

−→
τ(u)

+1

u
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β(τ) = − i
π

1
θ3(τ)4 β(τD) = i

π
1

θ3(τD)4

θ = 0

dg
ds ≈ g3

8π2
dgD

ds ≈ − g3
D

8π2

beta
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Schwinger-Zwanziger Quantisation Condition

Dyons with electric charges Q1 and Q2 and magnetic charges G1 and G2

satisfy

Q1G2 − Q2G1 = 4πn n ∈ Z

Let Q1 = q1g, Q2 = q2g, M1 = p1
4π
g and M2 = p2

4π
g with

p1, p2, q1, q2 ∈ Z. Then

p1q2 − p2q1 = n n ∈ Z

• At u → ∞ (τ → i∞) squarks have q = 1, p = 0

• At u → 1 (τ → 0) monopoles have q = 0, p = 1

• At u → −1 (τ → 1) dyons have q = 1, p = 1.
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• On the real axis, there are fixed points at:

τ = 0 (q = 0, p = 1), τ = 1 (q = 1, p = 1), τ = 2 (q = 2, p = 1), etc.

• All fixed points can be obtained by acting with an element of Γ(2) either on

τ = 0, τ = 1 or τ = i∞.

• There are fixed points for strong coupling at all rational values of

θ/2π = q/p; p odd for infra-red fixed-points and p even for ultra-violet fixed

points.
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The Quantum Hall Effect

I

n-typep-type

B

L

I
W

• Longitudinal (Ohmic) voltage Vxx, transverse (Hall) voltage Vxy .

Ohmic resistance Rxx = Vxx/I , Hall resistance Rxy = Vxy/I .

Ohmic resistivity ρxx = (W/L)Rxx, Hall resistivity ρxy = Rxy .
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xy

B

• Classically ρxy = − B
en .

(n = charge carrier density)

• For low T and high purity, resistance is quantised,

RH = h/e2 = 25.812807449(86) kΩ (von Klitzing (1980)).

(ν := nh/eB, filling factor)
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• Conductivity tensor

(
σxx σxy

−σxy σxx

)
is the inverse of

the resistivity tensor,

(
ρxx ρxy

−ρxy ρxx

)
(assuming isotropy ρxx = ρyy).

• Using complex coordinates, z = x + iy: ρ = ρxy + iρxx and

σ = σxy + iσxx, σ = −ρ−1.

• Quantum Hall states have: |σxy| = p/q with q odd, σxx = 0.

(units with e2/h = 1)

• Imσ > 0 (stability).
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Tsui (1990)
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Law of Corresponding States

• Physical properties of Quantum Hall Sates

are related when: σxy → σxy + 1, Landau Level Addition

1
σxy

→ 1
σxy

+ 2, Flux Attachment

σxy → 1− σxy, Particle-Hole Interchange

• More generally (σ := σxy + iσxx)

σ → σ + 1

− 1
σ → − 1

σ + 2

}
Γ0(2) ⊂ Γ(1)

σ → 1− σ̄ (Outer Automorphism)

(Kivelson, Lee + Zhang (1992), Lütken + Ross (1992), BD + Burgess (2001),

Witten (2003)).
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ch

Energy

=2

=3

=4

=1

Free particles in transverse B,

Schrödinger Equation ⇔ Harmonic Oscillator.

Energy levels (Landau Levels) equally spaced, degeneracy/unit area g = |B/e|.
Filling factor, ν := n/g = |1/ρxy| = |σxy| (when σxx = 0, e2/h = 1).

ν = integer ⇒ Energy Gap, ∆E = h̄ωc.

Expect ν → ν + 1 is a symmetry: σxy → σxy + 1 .
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Maxwell – Chern-Simons Theory

The classical relation

B = −enρxy ⇒ σxyB = J0

(J0 = en and σxx = 0)

can be derived from

Leff [A0] = −σxyA0B+A0J
0 → Leff [A] = −σxy

2
εµνρAµ∂νAρ+AµJµ.

Including Ohmic conductivity, σxx = i lim
ω→0

(ωε(ω))

Leff [A] = − ε
4F 2 − σxy

2 εµνρAµ∂νAρ + AµJµ.

Leff [A] ≈ iσxx

4ω F2 − σxy

4 εµνρAµFνρ + AµJµ.
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Scaling and Crossover

• Hall Plateaux ⇔ Different Phases of 2-D Electron Gas

• ν:q1/p1 → q2/p2 is a

Quantum Phase Transition, Fisher (1990) ξ ≈ |∆B|−νξ , ∆B = B − Bc

• Simple scaling ⇒ σ(T,∆B,ni) = σ(∆B/Tµ,ni/Tµ′
)

(ni is impurity density).

• At low temperatures σ(∆B/Tµ,ni/Tµ′
) → σ(∆B/Tµ)

(µ = scaling dimension). Pruisken (1988)

• Experimentally µ is the same for every transition: super-universality.

Wei et al. (1988)
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Shahar et al. (1997)

cond-mat/9611011

Hilke et al. (1999)

cond-mat/9810217
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Quantum Hall Selection Rule

• Action of Γ0(2) commutes with the crossover flow ⇒ fixed points of Γ0(2)
are fixed points of the crossover.

1+i

2 2

3+i

3+i

10

0 1 2

ν: 1 → 2 has σc = 3+i
2

• Any ν: q1/p1 → q2/p2 can be obtained from ν: 0 → 1 by some

γ ∈ Γ0(2).

γ(0) = q1/p1, γ(1) = q2/p2 ⇒ γ =
(

q2 − q1 q1

p2 − p1 p1

)
and

detγ = 1 ⇒
Selection Rule: |q2p1 − q1p2| = 1 (BD (1998)).
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Tsui (1990)
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Holomorphic β-functions

• Let lT =scattering length, an let s(lT ) be monotonic in lT (and T ) and

assume, in analogy with N = 2 SUSY Yang-Mills, that
dσ
ds = β(σ)

is holomorphic. (β(σ, σ): C. Burgess and A. Lütken (1998), BD (1998),

Taniguchi (1998))

⇒ β(σ) is a modular form, (of weight −2),

β(γ(σ)) = 1
(cσ+d)2 β(σ).

• Further assume: i) as σxx → ∞ β is finite; βxy → 0 and βxx < 0
ii) β → 0 as fast as possible at the plateaux (attractive fixed points) and

iii) there are no fixed points other than those of Γ0(2). Then

β(σ) = − i
π

1
ϑ4
3+ϑ4

4
.

ϑ3(σ) :=
∑∞

n=0 eiπn2σ , ϑ4(σ) :=
∑∞

n=0(−1)neiπn2σ
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Attractive fixed points at σxy = q/p, p odd; repulsive points for p even.

In the composite boson picture p is the number of vortices.
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0 1 2
0

1

2

G
xx

  (
e2 /h

)

G
xy

  (e2/h)

S.S. Murzin et al., cond-mat/0204206
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Including spin:

Energy

=2

=4

Spins poorly split

ν → ν + 2
σxy → σxy + 2
Γ(2)

Spins well split

ν → ν + 1
σxy → σxy + 1
Γ0(2)

Spins poorly split

ν → ν + 2
σxy → σxy + 2
Γ(2)

Georgelin et al. (1997); BD (2000)
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Infinite Hierarchies in Bosonic Systems

• When particles are bosonic we get a different group:

σ → − 1
σ

− 1
σ → − 1

σ + 2

⎫⎬⎭Γθ

σ → 1− σ̄

Characterised by either: a and d both odd, c and d both even; or a and d

both even, c and d both odd.

• – Fixed points at σ = i (σxx = 1, σxy = 0) and its images under Γθ .

– Attractive fixed points at σ = q/p (σxx = 0) with pq even and repulsive

fixed points when pq is odd. In particular even integers are stable and odd

integers are unstable.

– Realisable in 2-d bosonic systems: e.g. high mobility thin film

superconductors; Josephson junction arrays
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Summary

• N = 2 SUSY Yang-Mills is a 4-dimensional version on the QHE.

• Duality in N = 2 SUSY Yang-Mills manifests itself as Γ(2).

Infinite hierarchy of vacua with monopoles and dyons, θ = q/p.

Callan-Symanzik β-functions are modular forms of weight −2.

• Duality in the quantum Hall effect also manifests itself as Γ(2) or Γ0(2).

Infinite hierarchy of vacua for different quantum Hall plateaux, σxy = q/p.

Selection rule |q1p2 − q2p1| = 1.

Correct topology for crossover. Particle-hole symmetry predicts semi-circle

rule.

• When pseudo-particles are bosonic we get a different group, Γ0(2) → Γθ .

Expect a similar infinite hierarchy in high mobility, 2-D superconductors.
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The symmetries of the modular group are beautifully exhibited by transforming to

z = 1+iσ
1−iσ , (Poincaré map):

�σ

�z

−→
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Statistical Gauge Field

xi

x j

xi x j-

ij

O

Ψ̃(x1, . . . ,xN) =

e
iθ
π (Σ

i<j
(Σi<jφij)Ψ(x1, . . . ,xN )

Interchange i ↔ j, φij → φij + π ⇒ phase changes by

θ,

{
θ = 2πk Identity

θ = π(2k + 1) Fermions ↔ Bosons
Well defined provided particles never overlap (repulsive core).

In Hamiltonian −ih̄∇− eA → −ih̄∇− eA − ea where (α = 1, 2)

aα(xi) =
h̄θ

eπ

∑
j;j �=i

∇(i)
α φij = − h̄θ

eπ

∑
j;j �=i

εαβ
(xi − xj)β

|xi − xj |2
⇒ 1

2
εβα∇(i)

β aα(xi) =
h̄θ

e

∑
j

δ(2)(xi − xj) → h̄θ

e
n(xi)

B /
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ei

j

i

Particle i moving in background of particle j picks up

Aharanov-Bohm phase eiθ — interactions are identical to θ = 0 for all θ = 2kπ.

• θ → θ ± 2π is a symmetry of the interactions.

• θ = ±π is a map: Fermions ↔ Bosons.

In continuum b := (1/2)εβα∇βaα = h̄θ
e2 J0

Covariantly: S[a] = − e2

4h̄θ εµνλ
∫

d3x aµ∂νaλ +
∫

d3x aµJµ

Two descriptions of the same physics: Γ[A] and

Γ̃θ[A, a] := Γ[A + a] − e2

4h̄θ

∫
d3x εµνλaµ∂νaλ.

For θ = 2kπ this is a symmetry; θ = (2k + 1)π interchanges

Fermions ↔ Bosons.

Gaussian functional integral over a gives

L′
eff [A] = −π′

1

4 F2 − π′
3

2 εµνλAµ∂νAλ

Conductivities ⇒ − 1
σ′ = − 1

σ + 2 (k = −1).
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Semi-circle Law

• In general β(σ, σ̄) and β(γ(σ), γ(σ̄)) = 1
(cσ+d)2 β(σ, σ̄).

• Change variables from σ to f(σ) := − ϑ4
3ϑ4

4
ϑ4

3−ϑ4
4

. f(γ(σ)) = f(σ) is

invariant under Γ0(2)

βf (f , f) := df
ds .

• Let q := eiπσ , then f(q̄) = f(q) and σxy → −σxy is q → q̄.

• Law of Corresponding States ⇒ βf (f, f̄) = βf (f̄ , f) ⇒ βf is real if f is

real.

Any curve on which f is real is an integral curve of the flow
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