

TESCO

SMR 1646 - 14

Conference on Higher Dimensional Quantum Hall Effect, Chern-Simons Theory and Non-Commutative Geometry in Condensed Matter Physics and Field Theory 1 - 4 March 2005

Duality in N=2 supersymetric Yang-Mills and the quantum Hall effect

Brian DOLAN Department of Mathematical Physics, National University of Ireland, Maynooth, Ireland

These are preliminary lecture notes, intended only for distribution to participants.

Duality in ${\cal N}=2$ SUSY Yang-Mills and the Quantum Hall Effect

Brian Dolan

Department of Mathematical Physics

National University of Ireland

Maynooth

e-mail:bdolan@thphys.may.ie

ICTP, 3rd March 2005

Duality in Yang-Mills and the Quantum Hall Effect

- SUSY Yang-Mills and the running of θ
 - Duality and Modular Symmetry of ${\cal N}=2$ SUSY Yang-Mills
 - Callan-Symanzik β -functions and modular forms
- The Quantum Hall Effect (QHE)
 - Law of Corresponding States and Modular Symmetry in the QHE
 - Scaling and Crossover
 - Selection Rule, Semi-circle Law
- Hierarchies in 2-d bosonic systems

1

- Field content (adjoint rep.): $A_{\mu}, \ \psi_1, \ \psi_2$ (Weyl), ϕ (complex)
- Action:

$$\mathbf{S} = \int \mathbf{dx}^{4} \left\{ \left(-\frac{1}{4g^{2}} \mathbf{tr}(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}) + \frac{\theta}{32\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} \mathbf{tr}(\mathbf{F}_{\mu\nu}\mathbf{F}_{\rho\sigma}) \right) + \frac{1}{g^{2}} \mathbf{tr} \left((\mathbf{D}_{\mu}\phi)^{\dagger} \mathbf{D}^{\mu}\phi - \frac{1}{2}[\phi^{\dagger},\phi]^{2} \right) + \cdots \right\}$$

- Only two independent couplings: g and θ .
- Degenerate vacua parameterised by $<\phi>$, (or $u=\frac{1}{2}tr<\phi^2>$). SU(2) broken to U(1), $<\phi>$ gives gauge fields a mass.

Brian Dolan – NUIM ICTP	, 3rd March 2005	
Duality in Yang-Mills and the Quantum Hall Effect	3	
Duality and the Modular Group		
• Duality: $E \to B$ and $B \to -E$ is a symmetry of the vacuum Maxwell equations.		
• This is not a symmetry when charges are included unless magnetic monopoles are introduced, $g \rightarrow g_D = 4\pi/g$, (Dirac).		
• For QCD, when the vacuum parameter θ is included, this generalises to $\tau \to -1/\tau$ $\tau := \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$ (Im $\tau > 0$).		

• The Modular Group, $\Gamma(1)$, is the infinite discrete group of transformations, $\tau \rightarrow \frac{a\tau+b}{c\tau+d}$, with a, b, c and d integral and ad - bc = 1. This generalises $\tau \rightarrow -1/\tau$, (Witten).

- Elements of $\Gamma(1)$ preserve Im $\tau > 0$ and can be represented by 2×2 matrices $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a, b, c and d integral and $\det(\gamma) = 1$. The modular group $\Gamma(1)$ is the double cover of $Sl(2, \mathbb{Z})$.
- $\Gamma(1)$ is generated by

 $\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\gamma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $\tau \to \tau + 1$ $\tau \to -1/\tau$ • The dual theory has $au_D = -1/ au$

Duality in Yang-Mills and the Quantum Hall Effect 5 Low energy SUSY effective action is symmetric under $au o rac{a au + b}{c au + d}$ with a, b, c and d integers, ad - bc = 1 and both b and c even. (Seiberg+Witten). This is a sub-group $\Gamma(2)\subset \Gamma(1)$ generated by $\gamma = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad \boxed{\tau \to \tau + 2} \quad \text{and} \quad \gamma = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \quad \boxed{\tau \to \frac{\tau}{2\tau + 1}}.$ • Weak coupling (ultra-violet, $u \to \infty, \tau \to i\infty$) gluons and squarks are relevant degrees of freedom. • Strong coupling (infra-red, u
ightarrow 1, au
ightarrow 0, $au_D
ightarrow i\infty$) gluons and

monopoles are relevant degrees of freedom.

Callan-Symanzik eta-functions

• $u = (1/2)tr < \phi^2 > \text{is a mass}^2$. Given $\tau(u)$ define $\beta = -(u-1)\frac{d\tau}{d(u-1)} \approx -u\frac{d\tau}{du}$ for large u. $\beta(\tau) = -\frac{\mathbf{i}}{\pi} \frac{\mathbf{1}}{\vartheta_{\mathbf{3}}(\tau)^4}$

with $\vartheta_3(au):=\sum_{n=0}^\infty e^{i\pi n^2 au}$ (Jacobi artheta-function).

• $\beta(\tau)$ is a Modular Form (of weight -2):

$$\beta(\gamma(\tau)) = \left(\frac{1}{\mathbf{c}\tau + \mathbf{d}}\right)^2 \beta(\tau)$$

Brian Dolan – NUIM

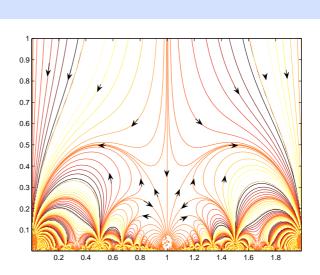
ICTP, 3rd March 2005

7

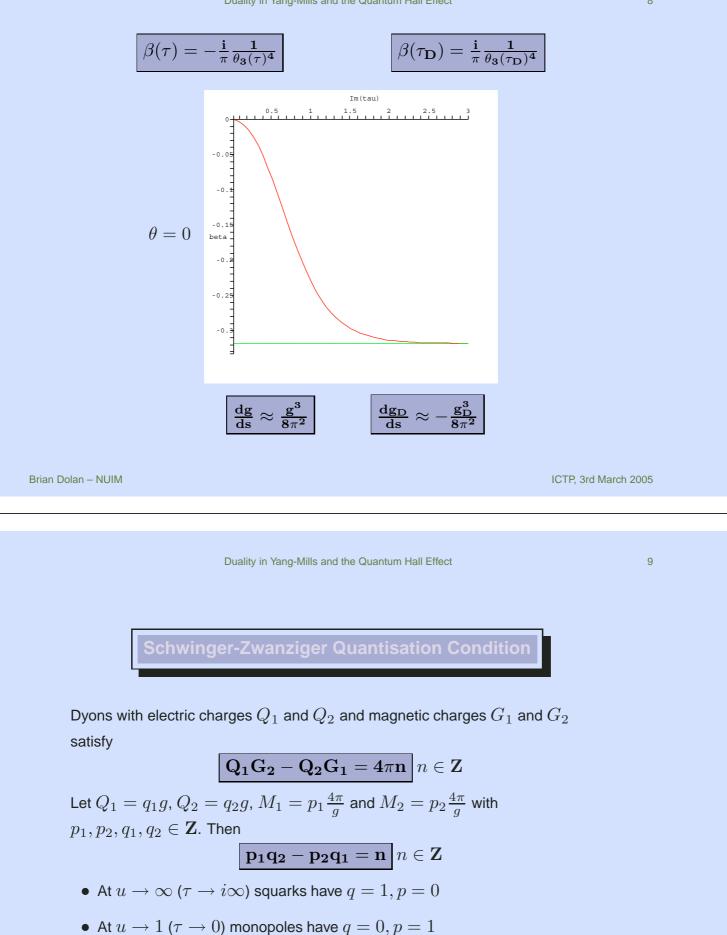
Duality in Yang-Mills and the Quantum Hall Effect

$$\beta(\tau) = -(\mathbf{u} - \mathbf{1}) \frac{\mathbf{d}\tau}{\mathbf{d}(\mathbf{u} - \mathbf{1})}$$

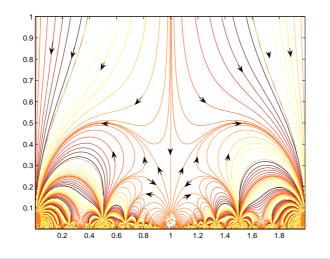
-1



Duality in Yang-Mills and the Quantum Hall Effect

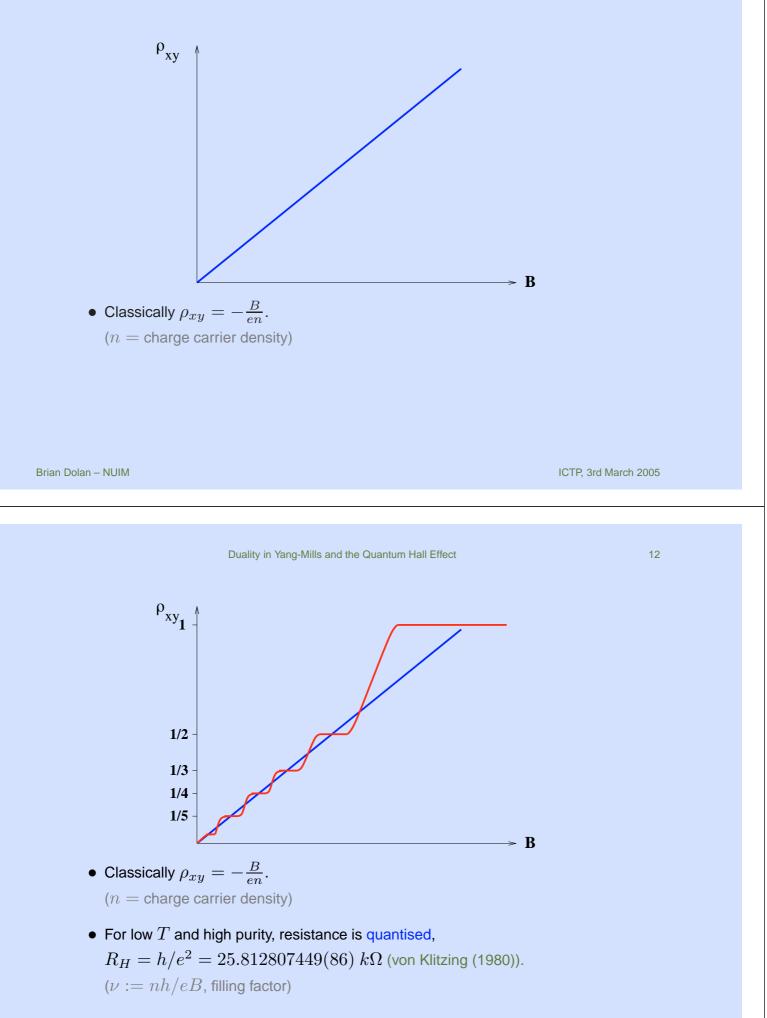


• At $u \to -1$ $(\tau \to 1)$ dyons have q = 1, p = 1.



- On the real axis, there are fixed points at: au=0 (q=0,p=1), au=1 (q=1,p=1), au=2 (q=2,p=1), etc.
- All fixed points can be obtained by acting with an element of $\Gamma(2)$ either on $\tau = 0, \tau = 1$ or $\tau = i\infty$.
- There are fixed points for strong coupling at all rational values of $\theta/2\pi = q/p$; p odd for infra-red fixed-points and p even for ultra-violet fixed points.

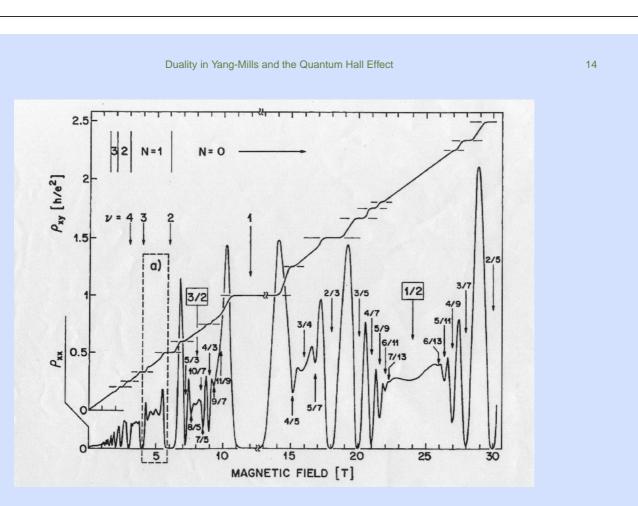
```
<text>
```



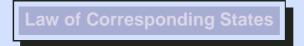
• Conductivity tensor
$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix}$$
 is the inverse of the resistivity tensor, $\begin{pmatrix} \rho_{xx} & \rho_{xy} \\ -\rho_{xy} & \rho_{xx} \end{pmatrix}$ (assuming isotropy $\rho_{xx} = \rho_{yy}$)

- Using complex coordinates, $\mathbf{z} = \mathbf{x} + \mathbf{i}\mathbf{y}$: $\rho = \rho_{\mathbf{x}\mathbf{y}} + \mathbf{i}\rho_{\mathbf{x}\mathbf{x}}$ and $\sigma = \sigma_{\mathbf{x}\mathbf{y}} + \mathbf{i}\sigma_{\mathbf{x}\mathbf{x}}$, $\sigma = -\rho^{-1}$.
- Quantum Hall states have: $|\sigma_{xy}|=p/q$ with q odd, $\sigma_{xx}=0.$ (units with $e^2/h=1$)
- $\mathrm{Im}\sigma > 0$ (stability).

Brian Dolan - NUIM



Tsui (1990)



• Physical properties of Quantum Hall Sates are related when: $\sigma_{xy} \rightarrow \sigma_{xy} + 1$, Landau Level Addition $\frac{1}{\sigma_{xy}} \rightarrow \frac{1}{\sigma_{xy}} + 2$, Flux Attachment

$$\sigma_{{f xy}} o {f xy}$$
 $\sigma_{{f xy}} o {f 1} - \sigma_{{f xy}}$, Particle-Hole Interchange

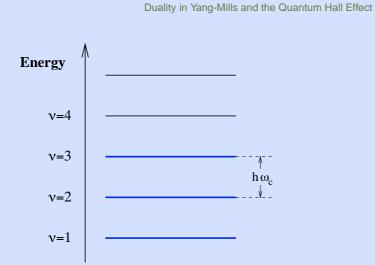
• More generally ($\sigma := \sigma_{xy} + i\sigma_{xx}$)

 $\begin{array}{c} \hline \sigma \to \sigma + 1 \\ \hline -\frac{1}{\sigma} \to -\frac{1}{\sigma} + 2 \\ \hline \sigma \to 1 - \overline{\sigma} \end{array} \right\} \Gamma_0(2) \subset \Gamma(1)$ (Outer Automorphism)

(Kivelson, Lee + Zhang (1992), Lütken + Ross (1992), BD + Burgess (2001), Witten (2003)).

```
Brian Dolan – NUIM
```

ICTP, 3rd March 2005



Free particles in transverse B,

Schrödinger Equation \Leftrightarrow Harmonic Oscillator.

Energy levels (Landau Levels) equally spaced, degeneracy/unit area g = |B/e|.

Filling factor,
$$\nu := n/g = |1/\rho_{xy}| = |\sigma_{xy}|$$
 (when $\sigma_{xx} = 0$, $e^2/h = 1$).

 $\nu = \text{integer} \Rightarrow \text{Energy Gap}, \Delta E = \hbar \omega_c.$

Expect $\nu \to \nu + 1$ is a symmetry: $\sigma_{xy} \to \sigma_{xy} + 1$.

The classical relation

$$B = -en\rho_{xy} \Rightarrow \sigma_{xy}B = J^0$$

 $(J^0=en ext{ and } \sigma_{xx}=0)$

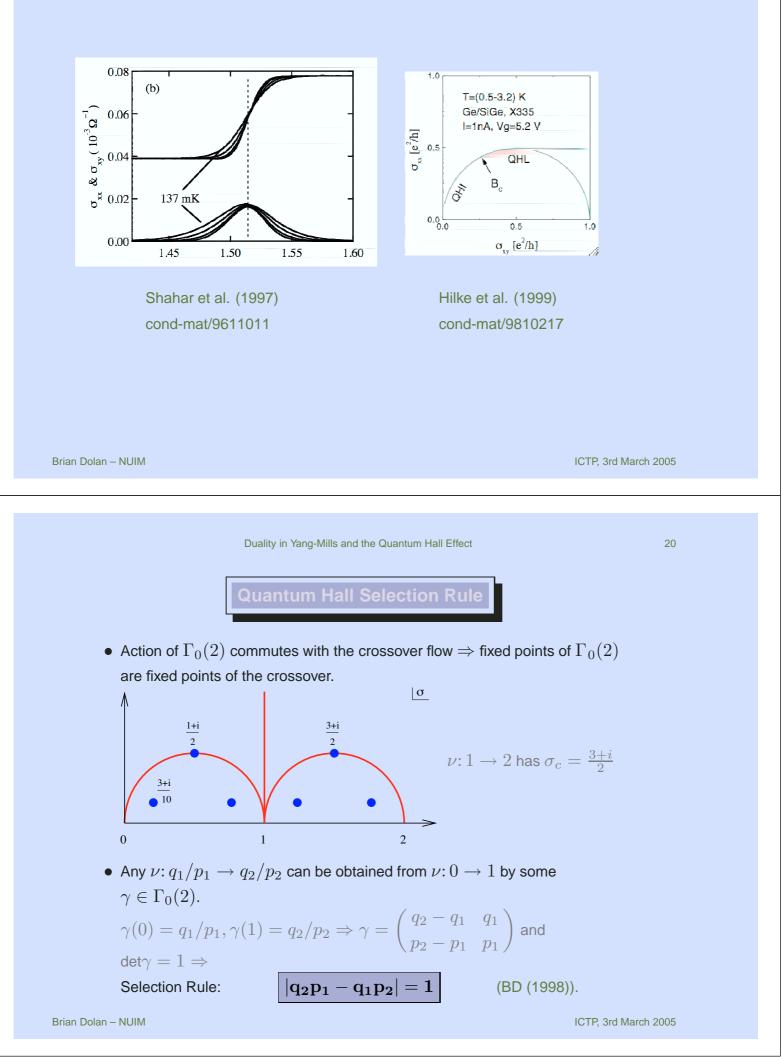
can be derived from

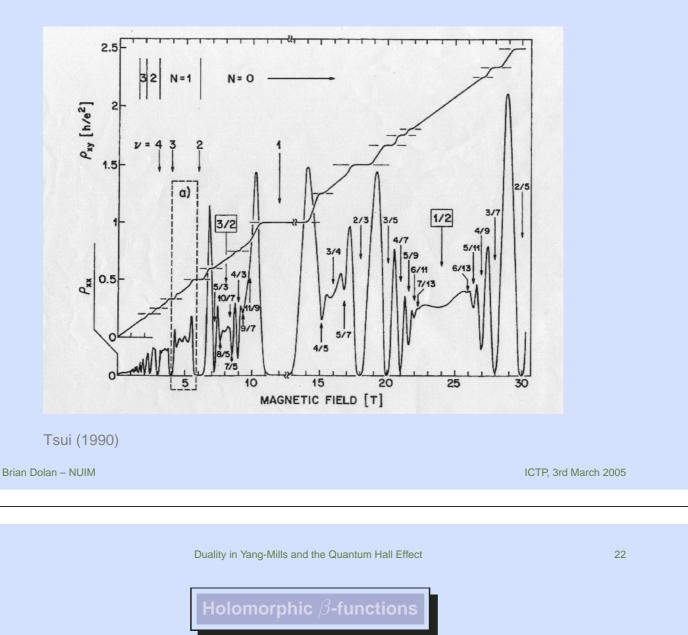
 $\mathcal{L}_{eff}[A_0] = -\sigma_{xy}A_0B + A_0J^0 \to \mathcal{L}_{eff}[A] = -\frac{\sigma_{xy}}{2}\epsilon^{\mu\nu\rho}A_\mu\partial_\nu A_\rho + A_\mu J^\mu.$ Including Ohmic conductivity, $\sigma_{xx} = i\lim_{\omega \to 0} (\omega\epsilon(\omega))$ $\mathcal{L}_{eff}[A] = -\frac{\epsilon}{4}F^2 - \frac{\sigma_{xy}}{2}\epsilon^{\mu\nu\rho}A_\mu\partial_\nu A_\rho + A_\mu J^\mu.$

$$\sim e_{jj} [1] \qquad 4^{1} \qquad 2^{\circ} \qquad 1^{\circ} \mu \circ \nu 1^{\circ} \rho + 1^{\circ} \mu \circ \cdot$$

$$\mathcal{L}_{\text{eff}}[\mathbf{A}] \approx \frac{\mathrm{i}\sigma_{\mathbf{x}\mathbf{x}}}{4\omega} \mathbf{F}^2 - \frac{\sigma_{\mathbf{x}\mathbf{y}}}{4} \epsilon^{\mu\nu\rho} \mathbf{A}_{\mu} \mathbf{F}_{\nu\rho} + \mathbf{A}_{\mu} \mathbf{J}^{\mu}.$$

Brian Dolan – NUIM





• Let l_T =scattering length, an let $s(l_T)$ be monotonic in l_T (and T) and assume, in analogy with N=2 SUSY Yang-Mills, that

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{s}} = \beta(\sigma)$$

is holomorphic. ($\beta(\sigma, \overline{\sigma})$: C. Burgess and A. Lütken (1998), BD (1998), Taniguchi (1998))

 $\Rightarrow \ eta(\sigma)$ is a modular form, (of weight -2),

$$\beta(\gamma(\sigma)) = \frac{1}{(\mathbf{c}\sigma + \mathbf{d})^2}\beta(\sigma).$$

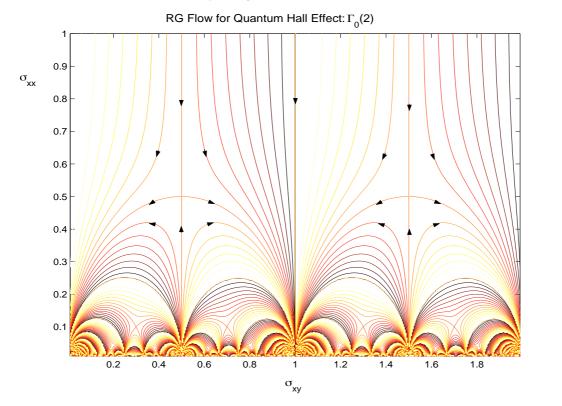
• Further assume: i) as $\sigma_{xx} \to \infty \ \beta$ is finite; $\beta_{xy} \to 0$ and $\beta_{xx} < 0$

ii) $\beta \rightarrow 0$ as fast as possible at the plateaux (attractive fixed points) and

iii) there are no fixed points other than those of $\Gamma_0(2).$ Then

$$\beta(\sigma) = -\frac{\mathbf{i}}{\pi} \frac{\mathbf{1}}{\vartheta_3^4 + \vartheta_4^4}.$$

 $\vartheta_3(\sigma):=\sum_{n=0}^\infty e^{i\pi n^2\sigma}$, $\vartheta_4(\sigma):=\sum_{n=0}^\infty (-1)^n e^{i\pi n^2\sigma}$ Brian Dolan – NUIM



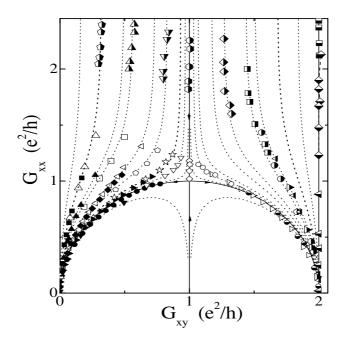
Attractive fixed points at $\sigma_{xy}=q/p$, p odd; repulsive points for p even. In the composite boson picture p is the number of vortices.

Brian Dolan – NUIM

ICTP, 3rd March 2005

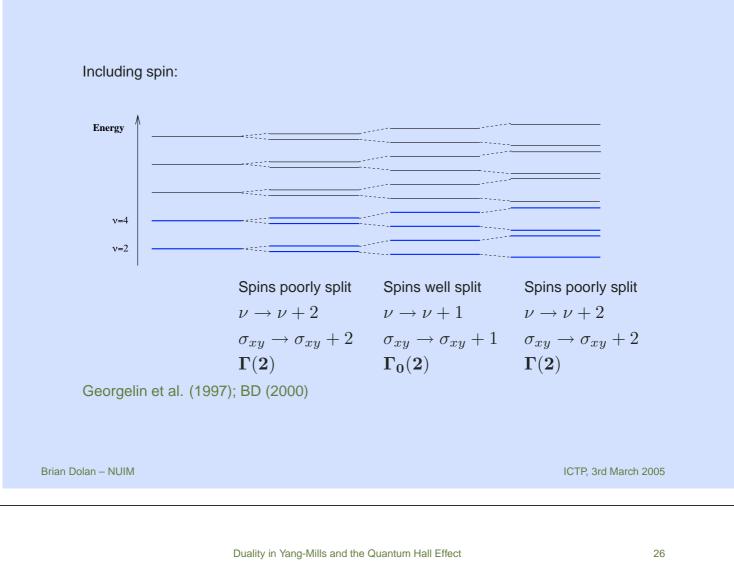
24

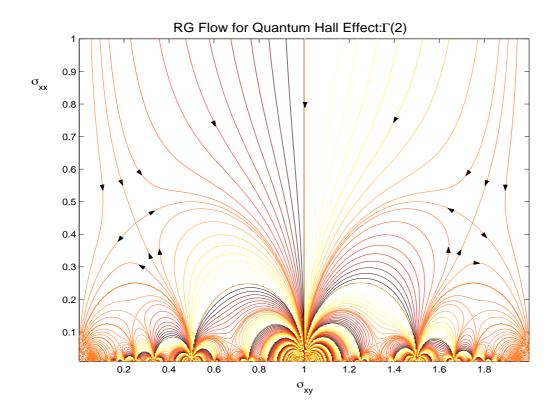
Duality in Yang-Mills and the Quantum Hall Effect

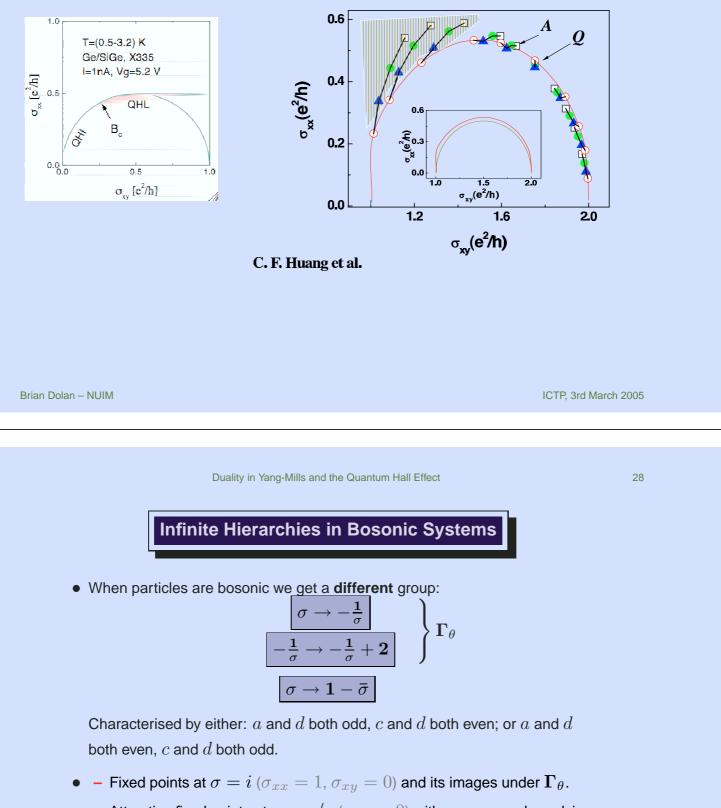


S.S. Murzin et al., cond-mat/0204206

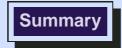
23







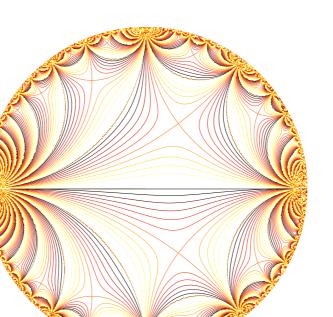
- Attractive fixed points at $\sigma = q/p$ ($\sigma_{xx} = 0$) with pq even and repulsive fixed points when pq is odd. In particular even integers are stable and odd integers are unstable.
- Realisable in 2-d bosonic systems: e.g. high mobility thin film superconductors; Josephson junction arrays



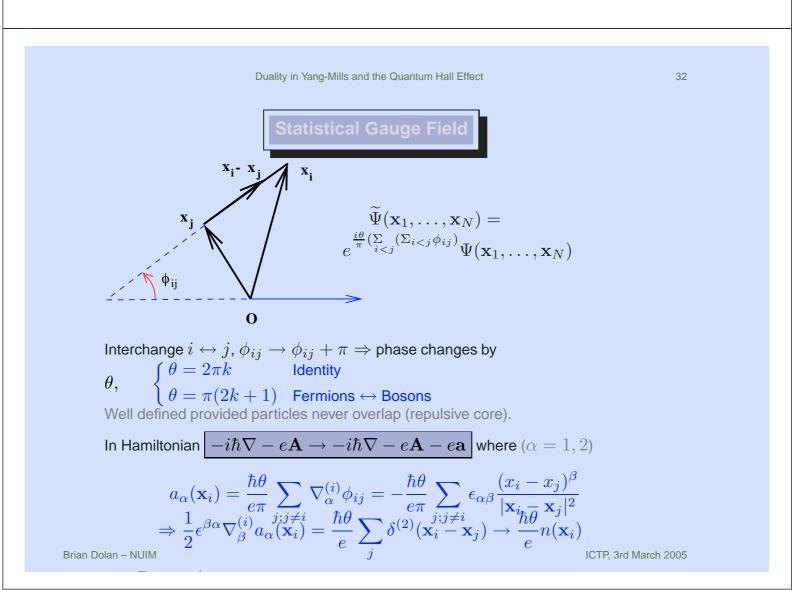
- N = 2 SUSY Yang-Mills is a 4-dimensional version on the QHE.
- Duality in N = 2 SUSY Yang-Mills manifests itself as $\Gamma(2)$. Infinite hierarchy of vacua with monopoles and dyons, $\theta = q/p$. Callan-Symanzik β -functions are **modular forms** of weight -2.
- Duality in the quantum Hall effect also manifests itself as $\Gamma(2)$ or $\Gamma_0(2)$. Infinite hierarchy of vacua for different quantum Hall plateaux, $\sigma_{xy} = q/p$. Selection rule $|q_1p_2 - q_2p_1| = 1$. Correct topology for crossover. Particle-hole symmetry predicts semi-circle rule.
- When pseudo-particles are bosonic we get a **different** group, $\Gamma_0(2) \rightarrow \Gamma_{\theta}$. Expect a similar infinite hierarchy in high mobility, 2-D superconductors.

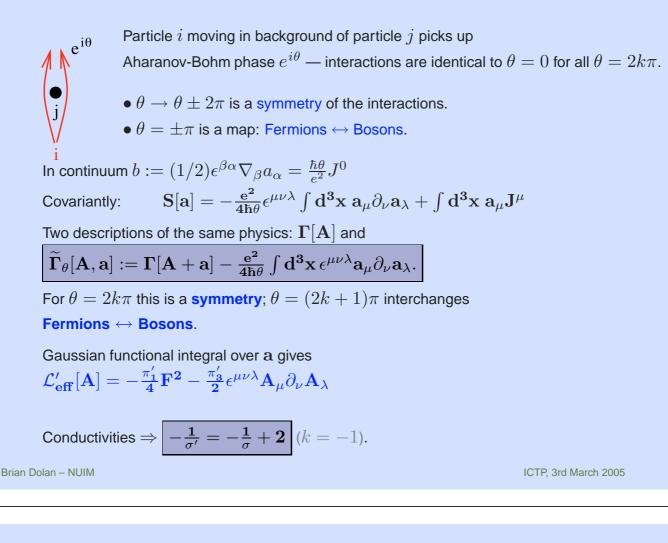
Brian Dolan – NUIM

<page-header><page-header><equation-block><text><text>



Brian Dolan – NUIM





Duality in Yang-Mills and the Quantum Hall Effect

Semi-circle Law

- In general $\beta(\sigma, \bar{\sigma})$ and $\beta(\gamma(\sigma), \gamma(\bar{\sigma})) = \frac{1}{(c\sigma+d)^2}\beta(\sigma, \bar{\sigma}).$
- Change variables from σ to $f(\sigma) := -\frac{\vartheta_3^4 \vartheta_4^4}{\vartheta_3^4 \vartheta_4^4}$. $f(\gamma(\sigma)) = f(\sigma)$ is invariant under $\Gamma_0(2)$

$$\beta_{\mathbf{f}}(\mathbf{f},\overline{\mathbf{f}}) := \frac{\mathbf{d}\mathbf{f}}{\mathbf{d}\mathbf{s}}$$

- Let $q := e^{i\pi\sigma}$, then $f(\bar{q}) = \overline{f(q)}$ and $\sigma_{xy} \to -\sigma_{xy}$ is $q \to \bar{q}$.
- Law of Corresponding States $\Rightarrow \overline{\beta_f(f, \bar{f})} = \beta_f(\bar{f}, f) \Rightarrow \beta_f$ is real if f is real.

Any curve on which f is real is an integral curve of the flow

34