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0. Overview

e Introduction to Moyal x.

e Generalization of Moval: The Fedosov x.

e An example of the the Fedosov * on S2



1. Introduction

The Moyal %

x?, py are classical variables.
1h
£ (@p) g (op) < fexp <5wABaAaB)
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where 94 = agA' A = (2%, ps) and given any function f
and g.

w = wspdqide® = dpendz® , A,B=1,....2n a,b=1,...,n

we note,

[xavxb}* — [p&apb]* =0 ) [xaapb]* — Zh(sg



Ordinary QM:

An arbitrary operator given by

- R I "
A= Z Aal---ambl...bnmal s xa’mp 1.. D n
m,n
can be mapped to:
A = Z Aa’l.”a’mbl"'bnxal sk o oo 3k xam * pbl % .k pbn
m,n

via the Weyl Transform (invertible and 1-1)

Moval * reproduces QM:
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2. Generalizing Moyal:
The Fedosov x

Let M is the phase space associated to N.

Fedosov gives an complicated algorithm to construct x
by a perturbative expansion. (I won't go over details
—not enough time).

at each point introc_juce

D ~ A~ .
AWAB ™ gperators g4 st. {yA,yB = jhwAb

— some complicated stuff here — {x“,xb:* . [pasprl + [2%, ol




The properties of the Fedosov * are,

o x . (C®°(M)xC®(M) — C°° (M) an associative but
noncommutative product.

e Invariant under all smooth coordinate transforma-
tions.

e In the limit h — 0T % becomes the pointwise multi-
plication of functions M.

e To first order in h the commutator is the Poisson
bracket: [f,g], =ih{f, g} + O (hQ)



e \We could construct the Fedosov x perturbatively
given any smooth manifold N.

e When the configuration space N = E™ (R"™ with
Euclidean metric d,,) we get the Moyal x.

*Note: There are some ambiguities in the construction.



3. An Example: S°

We calculated the % exactly and got the following com-
mutators,

[:1:“, xb]* =0, [xa, Lpl, = theypex€ , [La, Lp], = the peLC

z-L=20

z-z=1 |,

Most of the ambiguities are related by basis transfor-
mations.

20 S U2+« UL

Lb—>U>l<Lb>l<U_1

*Note that in general we will have commutators that
possibly involve the phase space curvature R and w.
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3. Conclusion

e [ he Fedosov x seems to be a natural generalization
of Moval.

e \We construct an exact solution and write the com-
mutators in the case of S2.

e Hopefully we can find more exact solutions for other
manifolds.
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