S F	The Abdus Salam International Centre for Theoretical Physic
P	

SMR 1646 - 15

Conference on
Higher Dimensional Quantum Hall Effect, Chern-Simons Theory and
Non-Commutative Geometry in Condensed Matter Physics and Field Theory
1 - 4 March 2005

Topological spin transport of relativistic particles

K. Yu. BLIOKH Institute of Radio Astronomy, Ukraine and Bar-Ilan University, Israel

These are preliminary lecture notes, intended only for distribution to participants.

TOPOLOGICAL SPIN TRANSPORT OF RELATIVISTIC PARTICLES

K.Yu.Bliokh^{1,2}

¹ Institute of Radio Astronomy, Ukraine
 ² Bar-Ilan University, Israel

collaboration: Yu.P.Bliokh, V.D.Freilikher, D.Yu.Frolov

Introduction

- topological spin transport
- general semi-classical motion equations

• Relativistic electron in electromagnetic field

- diagonalization of Dirac equation
- Berry's and total U(2) gauge fields
- origin of spin-orbit interaction
- motion equations for relativistic electron
- simple examples

• Photons in inhomogeneous medium

- diagonalization of Maxwell equations
- motion equations for photons
- spin-orbit interaction of photons

Conclusions

GENERAL

Semiclassical evolution of a particle with spin

semiclassical particle = wave packet

⇒ trajectory of center in classical phase space

Usually: classical trajectories (with accuracy of \hbar^0) phase (polarization) with accuracy of $i\hbar^{-1}(\hbar^0 + \hbar^1)$ Recently: trajectories with accuracy of \hbar^1 as well

TOPOLOGICAL SPIN TRANSPORT

Parallel transport

ħ-order "spin" terms are connected with geometry of parallel transport of state vector over the phase space.

⇒ (Berry) connection, curvature,

BERRY GAUGE FIELD

Relativistic form of Hamiltonian equations

$$\hat{H}(P^{\alpha}, R^{\alpha}) = \hat{H}(\mathbf{P}, \mathbf{R}, t) - P^{0}c$$
 - Hamiltonian

$$\hat{H}\psi = 0$$
 – Schrödinger equation

$$\dot{P}^{\alpha} = -\frac{i}{\hbar} \left[P^{\alpha}, \hat{H} \right]$$

- Hamiltonian equation

$$\dot{R}^{\alpha} = -\frac{i}{\hbar} \left[R^{\alpha}, \hat{H} \right]$$

$$P^{\alpha} = -i\hbar\partial_{R_{\alpha}}$$
, $\left[R^{\alpha}, P^{\beta}\right] = i\hbar g^{\alpha\beta}$ – commutation

metric tensor (-1,1,1,1)

Introduction of a gauge field

$$P^{\alpha} \rightarrow \hat{p}^{\alpha} = P^{\alpha} + \hat{A}_{r_{\alpha}}$$

$$R^{\alpha} \rightarrow \hat{r}^{\alpha} = R^{\alpha} + \hat{A}_{p_{\alpha}}$$

$$(\hat{A}_{p_{0}} \equiv 0)$$

canonical covariant variables variables

gauge potential

Semiclassical motion equations

with accuracy of \hbar , for classical values:

$$\dot{p}^{\alpha} = -g^{\alpha\beta}\partial_{r^{\beta}} H + F_{r_{\alpha}r_{\beta}}\partial_{p^{\beta}} H - F_{r_{\alpha}p_{\beta}}\partial_{r^{\beta}} H$$

$$\dot{r}^{\alpha} = g^{\alpha\beta}\partial_{p^{\beta}} H + F_{p_{\alpha}p_{\beta}}\partial_{r^{\beta}} H - F_{p_{\alpha}r_{\beta}}\partial_{p^{\beta}} H$$

ordinary part

field terms

where $P^{\alpha}, R^{\alpha} \rightarrow$ classical values,

and
$$F_{r_{\alpha}r_{\beta}} = (\chi | \hat{F}_{r_{\alpha}r_{\beta}} | \chi)$$
, $H = (\chi | \hat{H} | \chi)$, etc. vector of polarization

ELECTRON

Semi-classical diagonalization of Dirac equation

$$\hat{\mathbf{H}}\left(P^{\alpha}, R^{\alpha}\right) = \hat{\alpha}_{\beta} \left(P^{\beta} - \frac{e}{c} \mathcal{A}^{\beta} \left(R^{\alpha}\right)\right) c + \hat{\beta} mc^{2}$$

electromagnetic potential

modified Foldy-Wouthuysen transformation: $\psi \to \hat{U}^{\dagger} \psi$

$$\hat{H} \rightarrow \hat{U} \hat{H} \hat{U}^{\dagger}$$

$$\hat{U}\left(\tilde{\mathbf{p}}\right) = \frac{\bar{E}_{\tilde{p}} + mc^{2} + \hat{\beta}\hat{\alpha}\tilde{\mathbf{p}}c}{\sqrt{2\bar{E}_{\tilde{p}}\left(\bar{E}_{\tilde{p}} + mc^{2}\right)}}$$

$$\hat{U}(\tilde{\mathbf{p}}) = \frac{\bar{E}_{\tilde{p}} + mc^{2} + \hat{\beta}\hat{\alpha}\tilde{\mathbf{p}}c}{\sqrt{2\bar{E}_{\tilde{p}}(\bar{E}_{\tilde{p}} + mc^{2})}}$$
where
$$\tilde{p}^{\alpha} = P^{\alpha} - \frac{e}{c}\mathcal{A}^{\alpha}, \ \bar{E}_{\tilde{p}} = E_{\tilde{p}} - \frac{e\hbar c}{2E_{\tilde{p}}}\hat{\Sigma}\mathcal{H},$$

$$E_{\tilde{p}} = \sqrt{m^{2}c^{4} + \tilde{p}^{2}c^{2}}$$

Adiabatic reduction

positive (negative) energy 2x2 sectors

$$\Rightarrow \begin{pmatrix} + & + \\ + & + \end{pmatrix} - 2x2 \text{ operator for electron with accuracy of } \hbar$$

Covariant coordinates an gauge potentials

$$\hat{p}^{\alpha} = P^{\alpha} + \frac{e}{c} \mathcal{A}^{\alpha} + \hbar \hat{A}_{R_{\alpha}}$$

$$\hat{r}^{\alpha} = R^{\alpha} + \hbar \hat{A}_{P_{\alpha}}$$

- covariant variables U(2) - invariance

Electromagnetic potential

Berry gauge potential

$$\hat{A}_{P_{\alpha}} = (0, \hat{\mathbf{A}}_{\mathbf{P}}) \qquad \hat{A}_{R_{\alpha}} = -\frac{e}{c} (\partial_{R_{\alpha}} \mathcal{A}^{\beta}) \hat{A}_{P_{\beta}}$$

$$\hat{\mathbf{A}}_{\mathbf{P}} = \frac{(\tilde{\mathbf{p}} \times \hat{\mathbf{\sigma}}) c^{2}}{2E_{\tilde{p}} (E_{\tilde{p}} + mc^{2})}$$

- \Rightarrow 2 gauge potentials: U(1) on r^{α} + SU(2) on (p^{α}, r^{α})
- \Rightarrow total U(2)=U(1)xSU(2) gauge field on (p^{α}, r^{α})

Electron's Hamiltonian (in covariant variables)

$$\hat{\mathbf{H}}(\hat{p}^{\alpha}, \hat{r}^{\alpha}) = E_{\hat{p}} - \hat{p}^{0}c + \Delta \hat{E}$$
'free electron' interaction

with magnetic field

$$\Delta \hat{E} = -\frac{ec}{E_{\hat{p}}} \left(\frac{\hbar \hat{\sigma}}{2} + \hat{\mathbf{L}} \right) \mathcal{H}$$

 energy of spin and wave packet interaction with the magnetic field (corrected Zeeman energy)

Chang & Niu, 1996

Commutators of covariant variables and U(2) gauge field

$$\begin{bmatrix} \hat{r}^{+\alpha}, \hat{r}^{+\beta} \end{bmatrix} = i\hbar^2 \hat{F}^{\alpha\beta}
\begin{bmatrix} \hat{p}^{+\alpha}, \hat{p}^{+\beta} \end{bmatrix} = i\hbar \frac{e}{c} \mathscr{F}^{\alpha\beta} + i\hbar^2 \frac{e^2}{c^2} \mathscr{F}^{\alpha\gamma} \mathscr{F}^{\beta\delta} \hat{F}_{\gamma\delta}
\begin{bmatrix} \hat{p}^{+\alpha}, \hat{r}^{+\beta} \end{bmatrix} = -i\hbar g^{\alpha\beta} - i\hbar^2 \frac{e}{c} \mathscr{F}^{\alpha\gamma} \hat{F}^{\beta}_{\gamma}$$

electromagnetic field Berry gauge field in p-space

$$\hat{\mathbf{F}} = -\frac{c^4}{2E_{\tilde{p}}^3} \left[m\hat{\mathbf{\sigma}} + \frac{(\hat{\mathbf{\sigma}}\tilde{\mathbf{p}})\tilde{\mathbf{p}}}{E_{\tilde{p}} + mc^2} \right] - \text{`magnetic field'}$$
in **p**-space

Important note

Total U(2) gauge field on the phase space is <u>not</u> the sum of the electromagnetic U(1) and Berry gauge SU(2) fields.

Only potentials are additive values, while the field is a <u>non-linear</u> function of the potential in non-Abelian case.

Hence, we have to calculate the <u>total</u> U(2) field that essentially takes commutators of two potentials into account.

Trajectory motion equations (4D)

electromagnetic force

$$\dot{p}^{\alpha} = -\partial_{r_{\alpha}} H + \frac{e}{c} \mathcal{F}^{\alpha\beta} \dot{r}_{\beta}$$

$$\dot{r}^{\alpha} = \partial_{p_{\alpha}} H + \hbar F^{\alpha\beta} \dot{p}_{\beta}$$

'topological Berry force'

Trajectory motion equations (3D)

$$\dot{\mathbf{p}} = -\partial_{\mathbf{r}} \Delta E + e\mathcal{E} + \frac{e}{c} \dot{\mathbf{r}} \times \mathcal{H}$$

$$\dot{\mathbf{r}} = \frac{\mathbf{p}c^{2}}{E_{p}} + \partial_{\mathbf{p}} \Delta E - \hbar \dot{\mathbf{p}} \times \mathbf{F}$$

'Lorentz force' in **p**-space

$$\mathbf{F}(\mathbf{p},\mathbf{S}) = -\frac{c^4}{2E_p^3} \left[m\mathbf{S} + \frac{(\mathbf{S}\mathbf{p})\mathbf{p}}{E_p + mc^2} \right]$$

unit spin vector

Trajectory motion equations ('entangled')

resolving the motion equations with respect to $\dot{\mathbf{p}}$, $\dot{\mathbf{r}}$:

$$\dot{\mathbf{p}} = -\partial_{\mathbf{r}} \Delta E + e \mathcal{E} + \frac{e c}{E_{p}} \mathbf{p} \times \mathcal{H}$$

$$+ \frac{e}{c} \partial_{\mathbf{p}} \Delta E \times \mathcal{H} + \hbar \frac{e^{2}}{c} (\mathbf{F} \times \mathcal{E}) \times \mathcal{H} + \hbar \frac{e^{2}}{E_{p}} (\mathbf{F} \mathcal{H}) \mathbf{p} \times \mathcal{H}$$

$$\dot{\mathbf{r}} = \frac{\mathbf{p} c^{2}}{E_{p}} + \partial_{\mathbf{p}} \Delta E + \hbar e \mathbf{F} \times \mathcal{E} + \hbar \frac{e c}{E_{p}} \mathbf{F} \times (\mathbf{p} \times \mathcal{H})$$

topological terms

Corollary 1: non-relativistic electron in electric field

$$\dot{\mathbf{p}} = e\mathscr{E} \qquad \dot{\mathbf{r}} = \frac{\mathbf{p}}{m} \left(1 - \frac{p^2}{2m^2c^2} \right) - \frac{e\hbar}{2m^2c^2} \mathbf{S} \times \mathscr{E}$$

from Pauli Hamiltonian:
$$\dot{\mathbf{R}} = \frac{\mathbf{p}}{m} \left(1 - \frac{p^2}{2m^2c^2} \right) - \frac{e\hbar}{4m^2c^2} \mathbf{S} \times \mathscr{E}$$

Corollary 2: ultra-relativistic electron in electric field

$$\dot{\mathbf{r}} = c \frac{\mathbf{p}}{p} \left(1 - \frac{m^2 c^2}{2p^2} \right) - \mu e \hbar \frac{\mathbf{p} \times \mathcal{E}}{p^3}$$

 $\mathbf{F} = -\mu \frac{\mathbf{p}}{p^3} - \text{magnetic monopole Berry gauge field}$

Corollary 3: non-relativistic electron in magnetic field

Corollary 4: ultra-relativistic electron in magnetic field

$$\dot{\mathbf{r}} = c \frac{\mathbf{p}}{p} \left(1 - \frac{m^2 c^2}{2p^2} \right) + \partial_{\mathbf{p}} \Delta E + \mu \frac{e\hbar}{p^2} \mathcal{H}$$

What about preceding theories, Pauli Hamiltonian, spin-interaction et al.?

$$\hat{H}^{\text{(Pauli)}} = \frac{P^2}{2m} - \frac{e\hbar}{2mc} \hat{\sigma} \mathcal{H} - \frac{e\hbar}{4m^2c^2} \hat{\sigma} (\mathcal{E} \times \tilde{\mathbf{p}})$$

Electron's Hamiltonian (in canonical variables)

$$\hat{\mathbf{H}}\left(P^{\alpha}, R^{\alpha}\right) = E_{\tilde{p}} - \tilde{p}^{0}c + \Delta \hat{E} - \hbar \hat{\mathbf{A}}_{\mathbf{P}} \dot{\tilde{\mathbf{p}}}$$

or

topological term

$$\hat{\mathbf{H}} = E_{\tilde{p}} \underbrace{\frac{e\hbar c}{2E_{\tilde{p}}} \hat{\mathbf{\sigma}} \mathcal{H}}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z} = \mathbf{E}_{\tilde{p}}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(\mathcal{E} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(E_{\tilde{p}} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z}} \hat{\mathbf{\sigma}} \underbrace{\frac{c^{2}}{2E_{\tilde{p}} \left(E_{\tilde{p}} + mc^{2}\right)} \hat{\mathbf{\sigma}} \left(E_{\tilde{p}} \times \tilde{\mathbf{p}}\right)}_{\mathbf{Z}} \hat{\mathbf{\sigma}} \hat{\mathbf$$

⇒ Generalization of Pauli Hamiltonian

Motion equation for polarization

$$|\dot{\chi}\rangle = i\left[-\Delta\hat{E} + \hat{\mathbf{A}}_{\mathbf{P}}\dot{\tilde{\mathbf{p}}}\right]|\chi\rangle$$
 - motion equation

SU(2) evolution of polarization vector $|\chi\rangle$

$$|\chi\rangle = \mathcal{P} \exp \left[-i \int_{0}^{t} \Delta \hat{E} dt' + i \int_{C_{\tilde{\mathbf{p}}}} \hat{\mathbf{A}}_{\mathbf{P}} d\tilde{\mathbf{p}} \right] |\chi_{0}\rangle - \text{solution}$$

chronolodgical ordering

Bolte & Keppeler, 1999

non-Abèlian Berry phase

What Spin-Orbit Interaction is?

$$SOI \equiv -e\hbar \hat{\mathbf{A}}_{\mathbf{P}} \mathscr{E}$$

(without magnetic field: Mathur, 1991 Bérard & Mohrbach, 2004)

PHOTONS

photons = electromagnetic wave

spin state = polarization

$$\hbar \to \hat{\lambda} = c/\omega$$

semiclassics → geometrical optics

Maxwell equations

$$\left[\operatorname{curl}\operatorname{curl} - \lambda^2 n^2\right] \mathcal{E} = 0 \quad - \text{Maxwell equations}$$

$$n(\mathbf{R}) = \sqrt{\varepsilon(\mathbf{R})}$$
 - refractive index

$$\mathbf{P} \equiv \mathbf{p} = -i\hat{\boldsymbol{\chi}}\partial_{\mathbf{R}}$$
 – momentum operator

$$\hat{\mathbf{H}}\mathscr{E} = 0 , \quad \hat{\mathbf{H}}(\mathbf{p}, \mathbf{R}) = \begin{bmatrix} p^2 - n^2(\mathbf{R}) \end{bmatrix} + \hat{Q}(\mathbf{p})$$

$$\hat{Q}_{ij} = p_i p_j \quad \text{non-diagonal part}$$

Diagonalization and adiabatic reduction

$$\mathscr{E} = \hat{U}^{\dagger}(\mathbf{p})\mathscr{E}'$$
 - transformation

Covariant coordinates and Berry gauge field

$$\begin{pmatrix} \mathscr{E}'_{x} \\ \mathscr{E}'_{y} \end{pmatrix} \rightarrow \begin{pmatrix} \mathscr{E}'_{x} - i\mathscr{E}'_{y} \\ \mathscr{E}'_{x} + i\mathscr{E}'_{y} \end{pmatrix} - \text{basis of circular waves} \quad \mu = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\mathbf{r} = \mathbf{R} + \lambda \mathbf{A}^{\mu}$$
 – covariant coordinates $\mathbf{U}(1) \times \mathbf{U}(1)$

$$\mathbf{F}^{\mu} = \partial_{\mathbf{p}} \times \mathbf{A}^{\mu} = -\mu \frac{\mathbf{p}}{p^{3}} - \text{Berry gauge field}$$
 ('magnetic monopole')

$$\theta_B = \mu \int_{C_p} \mathbf{A} d\mathbf{p}$$
 - Berry phase

Hamiltonian

$$H(\mathbf{p},\mathbf{r}) = c[p-n(\mathbf{r})]$$

$$\left[r_{i}, r_{j}\right] = i \hat{\mathcal{X}}^{2} \varepsilon_{ijk} F_{k}^{\mu} = -i \hat{\mathcal{X}}^{2} \mu \varepsilon_{ijk} \frac{p_{k}}{p^{3}}$$

non-commutativity

Motion (ray) equations

$$\dot{\mathbf{p}} = -\partial_{\mathbf{r}} \mathbf{H} \qquad \dot{\mathbf{r}} = \partial_{\mathbf{p}} \mathbf{H} + \mathcal{X} (\mathbf{F}^{\mu} \times \dot{\mathbf{p}})$$

$$\dot{\mathbf{p}} = c\partial_{\mathbf{r}} n \qquad \dot{\mathbf{r}} = c\frac{\mathbf{p}}{p} + \hbar \mu \left(\frac{\mathbf{p}}{p^3} \times \dot{\mathbf{p}} \right)$$

Examples of topological spin transport of photons

1. Ray deflection during refraction at the boundary (correction to the Snellius law) Fedorov, 1955; ...

2. Spin transport in circular waveguides Zeldovich, 1990; Bliokh & Bliokh, 2004

3. Spin transport in periodic medium Onoda et al., 2004; Bliokh & Freilikher, 2004

Hamiltonian (in canonical coordinates)

spin-orbit interaction of photons!

Liberman & Zeldovich, 1992; Bliokh et al., 2004

Spin-orbit interaction of photons: fine splitting of levels

- ring resonator
- ⇒ orbital motion of photons

Taking SOI, $-\lambda \mathbf{A}^{\mu} \dot{\mathbf{p}}$, into account leads to the fine splitting of levels of ring resonator:

New quantum number: μm , (helicity)x(orbital moment)

Summary

In summary, the central results of the talk are the consistent semiclassical description and the motion equations for (relativistic) particles with a spin. We have derived fundamentally new motion equations for a relativistic electron in an external electromagnetic field, and those for photons in a smoothly inhomogeneous dielectric medium. The equations demonstrate that the additional external field, Berry topological field, affects the particles' motion. This leads to the various manifestations of the single phenomenon: **Topological Spin Transport of Particles.**

The talk is based on the results of the following original papers:

PHOTONS

- 1. K.Yu. Bliokh and Yu.P. Bliokh, *JETP Lett.* **79**, 519 (2004); K.Yu. Bliokh and Yu.P. Bliokh, *Phys. Rev. E* **70**, 026605 (2004).
- 2. K.Yu. Bliokh and Yu.P. Bliokh, *Phys. Lett. A* **333**, 181 (2004).
- 3. K.Yu. Bliokh and V.D. Freilikher, cond-mat/0405384 (to appear in *Phys. Rev. B*).
- 4. K.Yu. Bliokh and D.Yu. Frolov, physics/0412084.

ELECTRONS AND GENERAL

- 1. K.Yu. Bliokh and Yu.P. Bliokh, quant-ph/0404144 (to appear in *Ann. Phys. (N.Y.)*)
- 2. K.Yu. Bliokh, quant-ph/0501183.

THANK YOU!