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GENERAL



Semiclassical evolution of a particle with spin

semiclassical particle = wave packet

R—space / K-—space \

—

—> trajectory of center in classical phase space



Usually: classical trajectories (with accuracy of /)
phase (polarization) with accuracy of i#n=1(AY +A1)

Recently: trajectories with accuracy of 7! as well

classical trajectory

TOPOLOGICAL SPIN TRANSPOET



Parallel transport

h-order “spin” terms are connected with geometry of
parallel transport of state vector over the phase space.

U(n)

—  (Berry) connection, curvature,

BEFRY GAUGE FIELD



Relativistic form of Hamiltonian equations
H (P“ ,R” ) = ﬁ(P, R, t) —P’c - Hamiltonian
H w =0 — Schrédinger equation

p- =—%[P“,ﬁ]

— Hamiltonian equation

R :—%[R“,ﬁ]

P" =—iho, , [R“, P’ ]: i — commutation
/

metric tensor (— 1,1,1,1)



Introduction of a gauge field

canonical covariant
variables variables

- Aﬁ] Lo @ — commutation
ro,p” |=ing In

gauge field

gauge potential




Semiclassical motion equations

with accuracy of 7, for classical values:

Y5 , Ay F, & ,H-F, a\

rrﬂ p dpﬂ I” )

. . dﬂ
i =\g”d ,HxF, 0, H- Fparﬂﬁp/

ordinary part
field terms
where P“% R“ — classical values,

and F, =(y|F,,/|2), H=(x[H|7), etc

\ vector of polarization



ELECTRON



Semi-classical diagonalization of Dirac equation

S (B e pme

/

ﬁ(P“,R“):&ﬂ(Pﬂ —f

modified Foldy-Wouthuysen transformation: ¥ — U v

_ ~ & Tyt
0(~) Ep+mcz+B6cf)c 8l =18
P)=—FT—=
\/ZEp(Ep—l—mcz)
where "
:p“_f&y E,=E,———3%,
2F;

E —\/m ¢t + pc?



Adiabatic reduction

++O

0
\ - =

— adiabatic operator

positive (negative) energy 2x2 sectors

+ +
= ( j — 2x2 operator for electron
T T with accuracy of 7



Covariant coordinates an gauge potentials

— covariant variables
‘ U (2) — invariance

T Electromagnetic potential
Berry gauge potential

—> 2 gauge potentials: U(l) on»* + SU(2) on (p%r%)
— total U(2)=U(1)xSU(2) gauge field on (p%,r%)



Electron’s Hamiltonian (in covariant variables)

\

‘free electron’ 1nteraction

with magnetic field
g =< 20 i )ae

E.\ 2

p

— energy of spin and wave packet interaction
with the magnetic field (corrected Zeeman energy)

Chang & Niu, 1996



Commutators of covariant variables and U(2) gauge field

electromagnetic field

Berry gauge field in p-space

Gp)p _ ¢ i ’
C | 6 ( P)P magnetic field

2E} E,+mc’ in p-space

F=-




Important note

Total U(2) gauge field on the phase space is not the
sum of the electromagnetic U(1) and Berry gauge
SU(2) fields.

Only potentials are additive values, while the field is
a non-linear function of the potential in non-Abelian

case.

Hence, we have to calculate the total U(2) field that
essentially takes commutators of two potentials into
account.




Trajectory motion equations (4D)

electromagnetic force

‘topological Berry force’



Trajectory motion equations (3D)

pz—arAE+ec‘€+Ei'><Jf

‘Lorentz force’ in p-space

F(p.S)=- 2623 ”@+ (Se)

\ Eermc2

unit spin vector



Trajectory motion equations (‘entangled’)

resolving the motion equations with respectto p , r:

pz—ﬁrAEJre(“éJrﬁpx%

topological terms




Corollary 1: non-relativistic electron in electric field

p D’
. — e(% I.‘ = — o
P m( 2m202j

2
from Pauli Hamiltonian: R = 1 (1 __ P ] g Sx&

2 2
m 2m-c

Bérard & Mohrbach, 2004



Corollary 2: ultra-relativistic electron 1n electric field

SP/2P — helicity
— magnetic monopole Berry gauge field




Corollary 3: non-relativistic electron in magnetic field

. : N4
p:i(l_ Pz — {V ehz - (px I EGPAEXJK
mc Zmy’ m-c C

S/ — spin projection

" "
_|_




Corollary 4: ultra-relativistic electron in magnetic field

= cB[l— +aAE




What about preceding theories,
Pauli Hamiltonian, spin-interaction et al.?




Electron’s Hamiltonian (in canonical variables)

H(P“,R")= AE< P>

topological term

or

Zeeman term SOI term

—> Generalization of Pauli Hamiltonian




Motion equation for polarization

ly)=1i [—AE' + Apf)] | 7) — motion equation

SU(2) evolution of polarization vector |y)

e ——

4
) Xp —iIAEdt'+ijAPdﬁ | %,) | —solution
0 C; A

chronolodgical ordering \ii  oloet ey, 252
non-Abelian Berry phase



What Spin-Orbit Interaction 1s?

SOI = —chiA &

(without magnetic field: Mathur, 1991
Bérard & Mohrbach, 2004)

SOI
of topological nature




PHOTONS



photons = electromagnetic wave
spin state = polarization

h—o> A =cl/lw

semiclassics — geometrical optics

classical GO
modified GO

Refraction depends on polarization!




Maxwell equations

|:CUI‘1 curl- A°n’” } & =0| —Maxwell equations

n (R) =./& (R) — refractive index

P=p=-i10, — momentum operator




Diagonalization and adiabatic reduction

— adiabatic
approximation

transverse (longitudinal) waves



Covariant coordinates and Berry gauge field

&) (&~ o 1
“|—1| ., . | —basisof circular waves u =
& ¢, +i€, |

Y

r=R+AA“ — covariant coordinates U (1) x U (1)

F4 =0 xA* = —,LJL — Berry gauge field
g p3 (‘magnetic monopole’)

Fy = U j Adp | _ Berry phase
C

p




Hamiltonian

H(p,r):c[p—n(r)]

: P
Ff' =—ilpe, —~

|:I”l.,7'j:| =il’e, )

ijk

— non-commutativity




Motion (ray) equations

p=-0,H  i=0,H+1(F*xp)

r




Examples of topological spin transport of photons

1. Ray deflection during refraction at the boundary (correction to the Snellius law)
Fedorov, 1955; ...

T~

2. Spin transport in circular waveguides Zeldovich, 1990; Bliokh & Bliokh, 2004
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3. Spin transport in periodic medium Onoda et al., 2004; Bliokh & Freilikher, 2004




Hamiltonian (in canonical coordinates)

H(P»R)=C[P—H(R)]
\

spin-orbit interaction
of photons !

Liberman & Zeldovich, 1992;
Bliokh et al., 2004



Spin-orbit interaction of photons:
fine splitting of levels

— ring resonator
—> orbital motion of photons
Taking SOI, —4ZA“p , into account leads
to the fine splitting of levels of ring resonator:

New quantum number: um, | (helicity)x(orbital moment)




Summary

In summary, the central results of the talk are the
consistent semiclassical description and the motion
equations for (relativistic) particles with a spin. We have
derived fundamentally new motion equations for a
relativistic electron in an external electromagnetic
field, and those for photons in a smoothly
inhomogeneous dielectric medium. The equations
demonstrate that the additional external field, Berry
topological field, affects the particles’ motion. This leads
to the various manifestations of the single phenomenon:
Topological Spin Transport of Particles.
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