

SMR 1646 - 4

Conference on Higher Dimensional Quantum Hall Effect, Chern-Simons Theory and Non-Commutative Geometry in Condensed Matter Physics and Field Theory I - 4 March 2005

Quantum Hall droplets on CP (k) and edge effective actions

Dimitra KARABALI City University of New York, Lehman College, Physics Dept., NY-I 0468-1 589 New York, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

OHE on CPk and edge effective actions

with V.P. Nair

Generalize Zhang and Hu idea to arbitrary even dimensions.

$$CP^{k} = \frac{SU(k+1)}{U(k)}$$

Uniform treatment for abelian (v(1)) and nonabelian (v(k)) background magnetic fields

Overview

1) Solve Landau problem of a charged particle moving on CPk with constant U(1) magnetic field

- 2) Repeat for V(1) and SU(k) magnetic fields
- 3) LLL = noncommutative phase space
 Provides physical realization of fuzzy CPk
- 4) many-body problem in the presence of confining potential -> quantum Hall droplet

excitations = suface deformations which preserve volume of droplet

edge effective action

v(i) magnetic field

$$S \sim \int dt \left[\frac{3t}{3\phi} \chi \phi + \omega (\chi \phi)^2 \right]$$

Φ: scalar field L: derivative along droplet boundary

w: strength of confining potential

CP3 -> Zhang, Hu model (S' with su(z) instanton)

U(k) magnetic field

S = gauged WZW action on DD (higher dim. generalization of 2d WZW)

Definition of CPk

CPk: 2k dim manifold

parametrized by Zx x=1, ..., k+1

 $Z_{\alpha} \sim \lambda Z_{\alpha}$ $\lambda \neq 0$

T_xU_x=1 U_x~e^{iθ}U_x

$$u_{\alpha} = \frac{1}{1 + \overline{5} \cdot \overline{5}} \qquad \begin{pmatrix} \overline{5}_{1} \\ \vdots \\ \overline{5}_{K} \end{pmatrix}$$

U(1) magnetic field

Haldane (1983): QHE on S=CP'

gauge field: A =-in ū·du

Kahler form

F=-indu·du = n s

 $\int F = 2\pi n = 4\pi BR^{2} \implies n = 2BR$ integer CPk

Wavefunctions on CPk

Ψ~ ux, ... ux, ūp, ... ūp,

under $u \rightarrow e^{i\theta} u$ $\psi \rightarrow e^{i(p-q)\theta} \psi$ $\Rightarrow p-q=n$ $D \psi = (d-iA) \psi \quad \text{inv.}$

Y: irr. rep. of SU(k+1) Tata

$$CP^{k} = \frac{SV(k+1)}{V(k)}$$

$$g = \begin{pmatrix} u_i \\ u_{k+1} \end{pmatrix}$$

$$(k+1) \times (k+1) \quad \text{matrix}$$

$$g \rightarrow gh$$
, $h \in U(k)$ \iff $U_{x} \rightarrow e^{i\theta}U_{x}$
same point
 $in CPk$ \implies $CP^{k} = \frac{SU(k+1)}{U(k)}$

$$t_A:$$

$$\in U(1)$$

 t_{κ} coset gener. $\kappa=1,...,2k$ t_{-i} lowering

$$t_{k^2+2k} = \frac{1}{\sqrt{2k(k+1)}}$$

$$\frac{\mathcal{V}(1)}{gauge\ field}$$
: $A = in \left[\frac{2k}{k+1}\right] T_r \left(\frac{t_{k+2k}}{t_{k+2k}} g^{-1} dg\right)$

$$= -in g_{k+1/\alpha}^* g_{\alpha,k+1} = -in \overline{u} \cdot du$$

$$\Psi \sim \mathcal{D}_{L,R}(g) = \langle L | \hat{g} | R \rangle$$

Wigner D-function

L, R quantum numbers characterizing states within J rep.

$$\hat{L}_A g = T_A g$$
 $\hat{R}_A g = g T_A$

left rotations on g

$$A \longrightarrow A - \frac{nk}{[2k(k+1)]} d\theta$$

$$\Psi \longrightarrow \Psi e^{i R_{k} + 2k} \theta$$

$$D\Psi = (d-iA)\Psi$$
 invariant

4 ~ singlet under right SU/k) rotations

$$V_{m,-n} = [N] \langle m| \hat{g}| R_{a=0}, R_{k^2+2k} = \frac{nk}{[2k(k+1)]}$$

$$SU(k)_{R} \text{ singlet}$$
with fixed $U(1)_{R}$ charge

Hamiltonian

$$H = -\frac{1}{4M} \sum_{i=1}^{k} (D_{+i} D_{-i} + D_{-i} D_{+i})$$

$$[D_{+i}, D_{-i}] = 2B$$

$$\begin{bmatrix} \hat{R}_{+i}, \hat{R}_{-j} \end{bmatrix} = i f_{ij}^{\alpha} \hat{R}_{\alpha} + S_{ij} \sqrt{\frac{2(k+1)}{k}} \hat{R}_{k^2+2k}$$

$$= 0 - S_{ij} n = -(2BR^2) S_{ij}$$

$$D_{\pm i} = i \frac{\hat{R}_{\pm i}}{R}$$

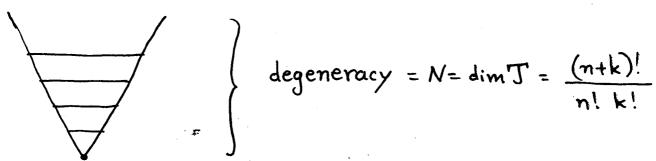
left rotations
$$\hat{L}_A : [\hat{L}_A, \hat{R}_B] = 0 [\hat{L}_A, H] = 0$$

$$H = \frac{1}{2MR^{2}} \left(\frac{5}{A} R_{A}^{2} - R_{k^{2}+2k}^{2} \right)$$

$$= \frac{1}{2MR^{2}} \left(C_{2} (T) - \frac{\eta^{2}k}{2(k+1)} \right)$$

energy:
$$E = \frac{B}{zM} (k+zq) + \frac{q(q+k)}{zMR^2}$$

$$\left(B \sim \frac{n}{2R^2} \right)$$



degeneracy =
$$N = dim T = \frac{(n+k)!}{n! k!}$$

Hilbert space of LLL -> symmetric rank n SU(k+1) rep.

V(1) and SV(k) magnetic fields

SU(k) magnetic fields:
$$A^a = zitr(t^a g^{-1}dg)$$

$$\psi \sim \langle ... L | \hat{g} | R \rangle$$

/ particular $SU(k)_R$ rep. = \tilde{J}

with fixed $U(i)_R$ charge

$$\psi_{m,\alpha}^{J} \qquad m=1,..., \dim J = N$$

$$\alpha = 1,... \dim \tilde{J} = N$$

$$H = \frac{1}{4MR^{2}} \sum_{i=1}^{k} \left(R_{+i} R_{-i} + R_{-i} R_{+i} \right)$$

$$= \frac{1}{2MR^{2}} \left(\sum_{A} R_{A}^{2} - \sum_{\alpha} R_{\alpha}^{2} - R_{k^{2}+2k}^{2} \right)$$

$$= \frac{1}{2MR^{2}} \left[C_{2}(J) - C_{2}(J) - \frac{\eta^{2}k}{2(k+i)} \right]$$

LLL:
$$R_{-i} \Psi = 0$$

degeneracy = $N = \dim J$
 $n \to \infty$

$$\dim J = \dim J \frac{n^k}{k!}$$

$$(\tilde{J} = (0, jk) \quad j = 1, 2, ...)$$

$$\hat{R}_{\alpha} \quad \forall_{m,\alpha} = (T_{\alpha})_{\alpha\beta} \quad \forall_{m,\alpha}$$

$$\hat{R}_{k+2k} \quad \forall_{m,\alpha} = -\frac{nk}{(2k(k+1))} \quad \forall_{m,\alpha}$$

$$T \text{ rep. of } SU(k+1) : \quad T_{p,\ell}$$

$$\int_{U(1)}^{2k(k+1)} SU(k)$$

$$V(1) \quad SU(k)$$

$$V(2k(k+1)) \quad R_{k+2k} = -k(p-q) + \ell - \ell' = -nk$$

$$V(2k(k+1)) \quad R_{k+2k} = -k(p-q) + \ell - \ell' = -nk$$

$$V(3k) \quad V(3k) \quad V(3k) \quad V(3k) = -nk$$

$$V(3k) \quad V(3k) \quad V(3k) = -nk$$

$$V(3k) \quad V(3k) \quad V(3$$

Edge states

LLL: N degenerate states

K fermions K<N

confining potential -> fermions localize near minimum of potential -> incompressible quantum Hall droplet

excitations = volume preserving deformations of the boundary

edge states -> dynamics confined on boundary

2d case: edge effective action
$$S \sim \int dt d\theta \left(\frac{\partial \phi}{\partial t} + \omega \frac{\partial \phi}{\partial \theta} \right) \frac{\partial \phi}{\partial \theta}$$
confining potential $V \sim \omega z\bar{z}$

S = (1+1) d chiral action

How does this generalize in higher dimensions? Generalize method by Sakita

droplet characterized by
$$\hat{p}_o = \frac{1}{2} |i| \times i|$$

$$\hat{p}_o = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
K occupied states
$$N-K \text{ empty states}$$

Under time evolution

$$[\hat{q},\hat{H}] = \frac{\hat{q}_b}{\hat{t}_b};$$

Û: "collective" variable describing all particle-hole excitations

Express S in terms of bosonic fields on the droplet boundary

NXN matrices --> functions on CPk (symbols matrix multiplication --> x-product

Tr -> N du (cpk)

$$T_r(\hat{A}\hat{B}\hat{C}) = N\int_{d\mu} A(\bar{\imath},\bar{\imath})*B(\bar{\imath},\bar{\imath})*c(\bar{\imath},\bar{\imath})$$

CPk with U(1) field

$$\hat{A} \longrightarrow A(\S, \overline{\S}) = \langle \S | \hat{A} | \S \rangle = \sum_{s,m} \langle \S | s \rangle A_{sm} \langle m | \S \rangle$$

$$= \mathcal{D}_{S,-n} A_{sm} \mathcal{D}_{m,-n}^*$$

$$\hat{A}\hat{B} \rightarrow (AB)(\bar{3},\bar{3}) = Z \langle \bar{3}|s \rangle \underbrace{Asr Brm}_{Asr \delta rr'} \langle m|\bar{3}\rangle$$

$$S_{rr'} = \sum_{s} \langle r|s \rangle \langle s|r' \rangle = \sum_{p} \mathcal{D}_{r,p} \mathcal{D}_{r,p}^*$$

$$\mathcal{D}_{r,p} = \sqrt{\frac{(n-i_1-...i_k)!}{n! \ i_1! \ i_k!}} \hat{R}_{+1}^{i_1} \hat{R}_{+2}^{i_2} ... \hat{R}_{+k}^{i_k} \mathcal{D}_{r,-n}$$

$$(AB) (3,3) = \sum_{s=i_1+\dots i_k} (-1)^s \frac{(n-s)!}{n! \ i_1! \dots i_k!} R_{-1}^{i_1} \dots R_{-k}^{i_k} A$$

$$R_{+1}^{i_1} \dots R_{+k}^{i_k} B$$

$$= A(\bar{z},\bar{z}) * B(\bar{z},\bar{z})$$

$$A*B = AB - \frac{1}{n} \sum_{i=1}^{k} R_{-i} A R_{+i} B + O\left(\frac{1}{n^2}\right)$$

$$([A,B])(5,5) = -\frac{1}{n} \sum_{i=1}^{k} (R_{-i}AR_{+i}B - R_{-i}BR_{+i}B) + O(\frac{1}{n})$$

Poisson bracket on CPk

$$\left\{A'B\right\} = \left(V_{2,1}\right)_{1,1} \left(\frac{91}{94} + \frac{91}{98} - \frac{91}{94} + \frac{91}{98}\right)$$

$$\Omega = -i \left[\frac{\overline{z} \cdot \overline{z}}{4\overline{z} \cdot \overline{z}} - \frac{\overline{z} \cdot \overline{z}}{(1+\overline{z} \cdot \overline{z})^2} \right]$$

Pick Po

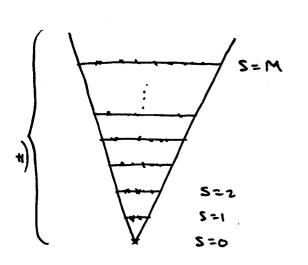
K fermions densely packed around minimum of confining potential

(2) Po = constant over the phase volume occupied by droplet

$$P_0 \sim \Theta \left(R_0^2 - \bar{z}.\bar{z} \right)$$
 $R_0 = droplet radius$

 $\partial P_o \longrightarrow \mathcal{S}$ -function with support at the droplet boundary

convenient choice for \hat{p}_s : fill up all SU(k) multiplets up to a maximum "hypercharge" M



$$P_{0} = \sum_{s=0}^{M} \frac{n!}{s! (n-s)!} \frac{(\bar{3} \cdot \bar{3})^{s}}{(1+\bar{3} \cdot \bar{3})^{n}}$$

$$\xrightarrow{\text{large}} \Theta \left(1 - n - \frac{r^2}{M} \right)$$

spherical droplet of radius $R_D \sim \sqrt{\frac{m}{B}}$ corresponding confining potential $V = \omega n \frac{\bar{J}.\bar{J}}{1+\bar{J}.\bar{J}} \rightarrow \omega \bar{z}\bar{z}$ $\langle S|\hat{V}|S \rangle = \omega S$

$$S = \int dt \; i \left(T_r \; \hat{p}_s \; \hat{U}^{\dagger} \partial_t \hat{U} \right) - T_r \left(\hat{p}_s \; \hat{U}^{\dagger} \; \hat{V} \; \hat{U} \right)$$

$$\hat{U} = e^{i \; \hat{\Phi}}$$

$$[\hat{\phi}, \hat{\psi}] = \frac{1}{2} \{ \hat{\phi}, \hat{\psi} \} = \frac{1}{2} (\nabla_{(1)})_{ij} \frac{3\xi!}{3\phi} \hat{\psi} = \frac{3^{2}}{3^{2}} \hat{\psi}$$

$$\zeta = i \left(\bar{z} \cdot \frac{s\bar{z}}{\bar{z}} - \bar{z} \cdot \frac{s\bar{z}}{\bar{z}} \right)$$

$$S \sim \int_{\partial t}^{\partial t} \frac{\partial \phi}{\partial t} + \omega \mathcal{L} \phi \mathcal{L} \phi$$

$$S \sim \int_{\partial t}^{\partial t} \left(\frac{\partial \phi}{\partial t} + \omega \mathcal{L} \phi \right) \mathcal{L} \phi$$

Twistor connection

$$\begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \Pi_1 \\ \Pi_2 \end{pmatrix}$$

$$\omega_{\dot{A}} = \underbrace{\left(x_{4} - i \vec{\epsilon} \cdot \vec{x} \right) \pi_{\dot{A}}}_{x's} : S^{4} = \underbrace{\left(x_{4} - i \vec{\epsilon} \cdot \vec{x} \right) \pi_{\dot{A}}}_{x's}$$

Kahler 2-form on CP decomposes into

F: SU(2) instanton field

$$A_{\mu} = i \frac{N^{\alpha} \eta_{\mu\nu} x^{\nu}}{(1+x^2)}$$

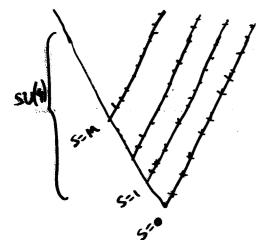
$$N_{\mu\nu} = \epsilon_{\alpha\mu\nu\gamma} + \delta_{\alpha\mu} \delta_{\gamma\nu} - \delta_{\alpha\nu} \delta_{\gamma\mu}$$

$$N^{\alpha} = \frac{\pi \sigma^{\alpha} \pi}{\pi \cdot \pi}$$

•
$$\{A,B\}_{CP^3} = (1+x^2) K^{\mu\nu} \frac{\partial A}{\partial x^{\mu}} \frac{\partial B}{\partial x^{\nu}} + (1+x^2) \{A,B\}_{CP'}$$

$$K^{\mu\nu} = -\frac{1}{2} N^{\alpha} \eta^{\alpha}_{\mu\nu} \quad \text{(local complex structure on S'4)}$$

· choose Vconf such that po defines a droplet on S4 (no S2 dependence)



$$P_{0} = \frac{M}{S} \frac{n!}{s! (n-s)!} \frac{\left(\bar{z}_{3}\bar{z}_{3} + \bar{z}_{4}\bar{z}_{4}\right)^{n-s} \left(\bar{z}_{1}\bar{z}_{1} + \bar{z}_{2}\bar{z}_{3}\right)^{n-s}}{\left(\bar{z}_{2}\bar{z}_{3}\right)^{n-s}}$$

$$= \frac{M}{S} \frac{n!}{s! (n-s)!} \frac{\left(x^{2}\right)^{s}}{\left(1+x^{2}\right)^{s}}$$

$$= \frac{5}{5=0} \frac{n!}{5! (n-5)!} \frac{(x^2)^5}{(1+x^2)^5}$$

5~8U(2) isospin

$$\rightarrow \Theta\left(1-\frac{n\times^2}{M}\right)$$

$$5 \sim \int dt \frac{d\mu(cP')}{\partial D} \int \left(\frac{\partial \phi}{\partial t} + \omega \mathcal{L}\phi\right) \mathcal{L}\phi$$

LA = 2x KM du + = derivative along the droplet boundary

Edge dynamics for CPk with U(k) background

1.
$$\hat{A} \longrightarrow A_{\alpha\beta}(\bar{5},\bar{5}) = \langle \bar{5}_{\alpha} | \hat{A} | \bar{5}_{\beta} \rangle$$

matrix valued = $\mathcal{D}_{m,\alpha}$ Ams $\mathcal{D}_{5,\beta}$

function

 $\alpha,\beta=1,...,\dim \bar{J}=N$

2.
$$\hat{A}\hat{B} \longrightarrow (AB)_{\alpha\beta}(\bar{S},\bar{S}) = A_{\alpha\beta} * B_{\beta\beta}$$

$$= A_{\alpha\beta} B_{\beta\beta} - \frac{1}{n} \sum_{i=1}^{k} \hat{R}_{-i} A_{\alpha\beta} \hat{R}_{+i} B_{\beta\beta} + \partial(\frac{1}{n^2})$$

3.
$$\left[\hat{A}, \hat{B}\right] \rightarrow \left[A, B\right] - \frac{1}{n} \left(R_{-i}A R_{+i}B - R_{-i}B R_{+}B\right) + O\left(\frac{1}{n}\right)$$

$$= \left[A, B\right] + \frac{1}{n} \left(-\Omega^{-i}\right)^{jm} \left(D_{j}A D_{m}B - D_{j}B D_{m}A\right)$$

$$D_{j} = \partial_{j}A + \left[J_{ij}, A\right]$$

$$SU(k) \text{ gauge field}$$

4. choose Po :

all SU(k) multiplets filled up to a maximum "hypercharge" number ____

$$(P_a)_{ab} \sim \Theta\left(1 - \frac{\eta \bar{J} \cdot \bar{I}}{M}\right) \mathcal{E}_{ab}$$

Edge effective action can be written in terms of unitary field
$$G \in \mathcal{U}(\dim \widehat{J})$$

$$KE = \int dt \; i \; Tr \left(\hat{p}_{o} \; \widehat{U}^{\dagger} \, \partial_{t} \widehat{U} \right)$$

$$= \frac{i}{4\pi} \int_{D\times R} \left[-dp \cdot G^{\dagger} \dot{G} dt \cdot G^{\dagger} D G \right]$$

Higher dimensional (2k dim) gauged WZW model

(Kahler-Chern-Simons)

Nair+Schiff

radial variable (r2) = extra dimension for WZW-term

$$S = \frac{1}{4\pi} \int_{D} dt \ tr \left[\left(G^{\dagger} \dot{G} \ G^{\dagger} \dot{A} G + \omega (G^{\dagger} \dot{A} G)^{2} \right) - i \left(\overline{S} \cdot \overline{\mathcal{A}} - \overline{S} \cdot \dot{A} \right) \left(\dot{G} G^{\dagger} + G^{\dagger} \dot{G} \right) \right]$$

$$+ \frac{i}{4\pi} \int_{D} t_{r=1} \left[G^{\dagger} \dot{G} \left(G^{\dagger} \dot{A} G \right)^{2} \right] \wedge \left(\frac{i \cdot \mathcal{A}}{\pi} \right)^{k-1}$$

QHE in higher dimensions

- · physical realization of fuzzy spaces
- · related to dynamics of droplets of higher dimensional incompressible fluids
- · interesting class of edge field theories higher dim. generalization of WZW actions
- · higher dimensional bosonization