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Emergent Einstein Gravity

S = − c 3

16πG
dV −g∫ R + Smatter

Einstein’s space time = the Lorentz invariant topological nematic
superfluid (at least in 2+1D)

A medium characterized by:
- emergent general covariance
- absence of torsion- and compressional rigidity
- presence of curvature rigidity (topological order)
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Plan of talk

1. Plasticity (defected elasticity) and differential geometry

2. Fluctuating order and high Tc superconductivity

3. Dualizing non-relativistic quantum elasticity
3.a Quantum nematic orders

3.b Superconductivity: dual Higgs is Higgs

4. The quantum nematic world crystal and Einstein’s space time
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Quantum-elasticity: basics

S = µ uxx
2 + 2uxy

2 + uyy
2 + ν

1−ν
uxx + uyy( )2

+ ∂τ ux( )2 + ∂τ uy( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

S = µ q2

2
+ ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ | uT |2 + q2

1−ν
+ ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ | uL |2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 cph
2 = 2µ /ρ =1, h = 1, uab = ∂aub + ∂bua( )/2

µ ν κ = µ 1 + ν( )/ 1 − ν( )

Quantum elastic action, isotropic medium 

Shear modulus      , Poisson ratio      , compression modulus

Describes transversal- (T) and longitudinal (L) phonon,
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Elasticity and topology: 
the dislocation

J.M. Burgers (Delft):

Discovery of the
topological excitation

War time needs (Peierls, Mott, 
Friedel, …)
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The Singularities
Dislocation:

Restores translational invariance

Destroys shear rigidity

Topological charge: Burgers vector

Disclination:

Restores rotational invariance

Destroys curvature rigidity, like 
mass source in gravity (!)

Topological charge: Franck ‘scalar’

Disclinations ‘liberate’ non-abelian nature of 
the euclidean group (diffeomorphism)

Disclinations are ‘bad’ (difficult)



7

Engineering curvature

Fluctuating geometry = simplexes with fluctuating edge-lengths “Regge
Calculus”

Disclination in ‘buckystuff’: like conical singularity in 2+1 D gravity
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The  mathematical machine

Hagen Kleinert
(FU Berlin)

Abelian Higgs duality

Theory of plasticity in 3D (classical): 
similarity with euclidean gravity!
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Elasticity and general covariance

ea
µ = δa

µ → δa
µ − ∂aξ

µ

gµν = eµ
aeaν = δµν → δµν + ∂µξν + ∂ν ξ µ( )

gij = δij → δij + ∂iu j + ∂ jui( )

General covariance: infinitisimal coordinate transformation

General covariance = gauge invariance under elastic deformations
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Plasticity and differential geometry

Dν v µ = ∂ν v µ + Γνλ
µvλ Γµν

λ = ∂µ∂νξ λ

Sµνλ = 1
2

∂µ∂ν −∂ν∂µ( )ξλ

Rµνλκ = ∂µ ∂ν −∂ν∂µ( )∂λξκ

Jµa = εµνλSνλa

Θµν ≡ Gµν = Rµν − 1
2

gµν Rκ
κ

Covariant derivative: Connection, linearized:

ξ λ → uλ
Associate:

Curvature tensor:

==> Einstein tensor corresponds with disclination current!

‘Bad’ news: torsion = dislocation currents
Crystal = geometry 
with curvature and 
torsion. 
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Non-linear plasticity

Use gravity techniques to solve problems associated with  
large defect densities/plastic deformations ( K. Kondo, 
1952 ….)

∂ν v µ → Dν v µ = ∂ν vµ + Γνλ
µv λ

Substitute covariant derivatives for derivatives 

Use full curvature, torsion tensors instead of linearized
tensors

Program not  greatly successful when it matters (e.g. 
glasses).
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The universe as a strange crystal 
…

Special ‘crystal’: isotropic elastic medium in space and time 
directions (Euclidean signature)

(a) Lorentz-invariance

(b) Curvature is not quantized, Franck vectors are …

disclination in a triangular lattice2π
3

Deep geometrical/topological similarity with 
space-time (also: Bais et al, ‘quantum doubles’: 
crystal ==> Witten’s 2+1 D gravity)
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Why the universe is not a 
‘Lorentz’ crystal

(a) Crystal ‘geometry’ is characterized by torsion, the universe is not …

(b) Disclinations are (quadratically) confined: curvature costs infinite energy! 

(c) Deadly: crystals have no general covariance, the flat metric is preferred !!!

Elastic deformation costs 
energy: action is not gauge 
invariant …

These problems seem to be  cured in the quantum 
NEMATIC world crystal … (at least in 2+1D)
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Plan of talk

1. Plasticity (defected elasticity) and differential geometry

2. Fluctuating order and high Tc superconductivity

3. Dualizing non-relativistic quantum elasticity
3.a Quantum nematic orders

3.b Superconductivity: dual Higgs is Higgs

4. The quantum nematic world crystal and Einstein’s space time
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Correlated superconductors
Ideal Bose-Einstein gas

BEC cold atomic gas, BCS metallic 
superconductor

Helium 4 superfluid

High Tc superconductors

Strongly correlated fluid: locally like a solid.

Roton
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Stripe order:
charge, spin, domain walls

-- Charge order (e.g. STM)

-- Spin order (neutrons,NMR)

-- ‘Topological order’, ‘domainwall-ness’, 
‘antiphaseboundariness’
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Electrons coming to a standstill

STM

Kapitulnik et al (Stanford) Davis et al (Cornell)

These ‘stripes’ are ubiquitous in doped Mott insulator (nickelates, 
manganites, …)

Cuprates: stripes are extremely quantum mechanical …
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Quantum Fluctuating stripe 
order

Fourier transform

YBCO Tc=60K: Mook et 
al, Oak Ridge

Neutron scattering: spin 
fluctuations, subpicosecond!

JZ, Science 286, 251 
(1999)

Stripe spin 
wavevectors
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Nematic superfluids

Nematic order Bose condensation

Kivelson,Fradkin, Emery, Nature 393, 
550,1998
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The Singularities
Dislocation:

Restores translational invariance

Destroys shear rigidity

Topological charge: Burgers vector

Disclination:

Restores rotational invariance

Destroys curvature rigidity, like 
mass source in gravity (!)

Topological charge: Franck ‘scalar’

Disclinations ‘liberate’ non-abelian nature of 
the euclidean group (diffeomorphism)

Disclinations are ‘bad’ (difficult)
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Dislocations: example

1
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3
4

5
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7
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Plan of talk

1. Plasticity (defected elasticity) and differential geometry

2. Fluctuating order and high Tc superconductivity

3. Dualizing non-relativistic quantum elasticity
3.a Quantum nematic orders

3.b Superconductivity: dual Higgs is Higgs

4. The quantum nematic world crystal and Einstein’s space time
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XY-electromagnetism  duality in 
2+1D

Consider quantum phase dynamics (XY in 2+1D),
Relativistic short hand (magnon),

Hubbard-Stratanovich auxiliary field

Divide in smooth and multivalued field configurations,

acts like Lagrange multiplier ==>        conserved==>imposed by gauge field   

S = 1
g

(∂µϕ)2 mod(2π )

ξµ
S = gξµξµ + iξµ∂µϕ

ϕ = ϕsm + ϕMV

S = gξµξµ + iξµ∂µϕMV + iξµ∂µϕ sm

ϕsm ξµ

∂µξ µ = 0 ⇒ ξ µ = εµνλ∂ν Aλ

Aµ

Dual action: S = gFµν F µν + iAµ JV ,
µ

Vortex current: JV
µ = εµνλ∂ν∂λϕ ⇔ dϕ = 2πn∫

H = (n i )
2 − J cos( ϕ i − ϕ j )

< ij >
∑

i

∑

gξ µξ µ + iξ µ∂µϕ MV − iϕ sm (∂µξ µ )
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Disorder field theory

S = dx d dτ | ∂µ − iAµ( )Ψ |2 + m 2 | Ψ |2 +w | Ψ |4 + Fµν F µν[ ]∫

Theory describing vortex tangle:
Long range interaction Core vs kinetic energy Hard cores
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Dualize elasticity: stress gauge
fields (Kleinert)

S = Cµνab∂µ ua∂ν ub

σµ
a ∂µua

S = σ µ
aCµνab

−1 σν
b + iσ µ

a∂µusm
a + iσ µ

a ∂µuMV
a

usm
a

∂µσ µ
a = 0 ⇒ σ µ

a = εµνλ∂ν Bλ
a

Bµ
a

S = (ε∂B) C −1 (ε∂B)[ ]+ iBµ
a Jµ

a

Jµ
a = εµνλ∂ν ∂λuMV

a ⇔ du a = ba∫
Jµ

a
 

r 
b = bx ,by( )

Quantum elasticity:

Hubbard-Stratanovich = stress (      ) - strain (         ) duality,

Integrate over smooth displacement fields 

Conservation of stress imposed by ‘stress photons’ (pseudo tensors)

Dual action:

are dislocation currents,                        Burgers vector.
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Phonons as stress photons

‘Phonon’ action (elastic medium) in stress photons:

  
S =

hc ph

4µ
dq2dω 2(ω 2 + q2 /2) | B−1

T |2 + 1
1+ ν

1−ν( )ω 2 + q2( )| B+1
T |2 + ω 2 + q2( )| B−1

L |2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ∫

 
∂µ ua ∂ν ub

r 
p 

= Cµµaa
−1 δµν δab − Cµλac

−1 Cνκbd
−1 σ λ

c σ κ
d

r 
p 

Transversal phonon Longitudinal phonon Instanteneous stress

σ µ
a = εµνλ∂ν Bλ

a

Strain (phonon) propagator recovered through dual relation:
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Nelson-Halperin-Young + hbar

Nematic (‘hexatic’) quantum order:
Dislocations bose condense
Disclinations stay massive
Idealization: interstitials non-existent.

Particle transport at 
dislocation collsions
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The dual (dislocation) condensate
Leff = LMeissner + LMaxwell + LDirector

LMeissner = q0
2 | nT (Qab ) |2

2µ
| B−1

T |2 +4
ˆ ω 2

1+ ˆ ω 2
| B−1

L |2 −2
ˆ ω (1− ˆ ω 2)

1+ ˆ ω 2
B+1

T *B−1
L + h.c.( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

LMaxwell =" (ε∂B)C −1 (ε∂B) " LDirector =" ∂Q( )2 + mQ
2 Q2 + wQQ4 "

Ψ = Ψ e iψ , | Ψ |2 ≠ 0 ⇒Dislocation Meissner Phase:

λshear = 1/q0 : shear penetration depth

“Glide nematic” Burgers 
vectors disordered Broken 
rotational symmetry 
Anisotropic

“Topological Nematic” (Toner-
Lammert-Rokshar)       Burgers vectors 
disordered   Isotropic, but massive 
disclinations

λshear
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Dislocations and shear
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Dynamics: glide principle

‘topological dynamics’: propagation only possible along Burgers vector

Field theory: requirement for finite compression modulus in liquid
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Topological nematic superfluid: 
excitations

Superfluid hydrodynamics:
Isolated massless compression, massive shear: Euler fluid

Periodicity (vortex quantization): inherited from dislocation condensate



32

Plan of talk

1. Plasticity (defected elasticity) and differential geometry

2. Fluctuating order and high Tc superconductivity

3. Dualizing non-relativistic quantum elasticity
3.a Quantum nematic orders

3.b Superconductivity: dual Higgs is Higgs

4. The quantum nematic world crystal and Einstein’s space time
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Superconductivity: photons vs. 
stress-photons

Charged elastic medium (bosonic Wigner crystal): couple in EM gauge fields

  
S = dx 2dτ nee

r 
u •

r 
E + Fµν F µν[ ]∫ Ex,y = ± ∂x,y Aτ − 1

c
∂τ Ax,y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Fµν = ∂µ Aν −∂ν Aµ

Dualize in stress photons, focus on magnetic sector:

Ltot = LAA + LAB + LBB

LAA = 1
λL

2 + ω 2

c2 + q2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ | A−1 |2 + .... | A+1 |2

LAB = − nee
ρc 2 B−1

T A−1 + f A+1,B−1
L ,B+1

T( )

LBB = 1
4µ

2ω 2 + q2 + 2
λshear

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ | B−1

T |2 +g B−1
L ,B+1

T( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
λL

2 = ne
2e2

ρc 2 bare London penetration depth, 
superconductor??

Effective EM action: integrate out stress 
photons

Crystal: Meissner term eaten
Shear length finite (fluid):

compensation incomplete, 
electromagnetic Meissner
‘liberated’!!
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The dual Higgs boson and 
electron loss

PlasmonDual  (shear) 
Higgs photon

Dual Higgs mass

Ω ≈ 50meV !?

ω p ≈1eV
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Superfluid hydrodynamics

Superfluid: quantized Euler fluid

  ∂t
r 
u + (

r 
u •

r 
∇ )

r 
u =

r 
∇ p,"mod(2π )"

Footnote (this talk): this is the zero temperature 
hydrodynamics of a solid which has lost its rigidity against 
long range shear forces.

Landau Feynman
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Plan of talk

1. Plasticity (defected elasticity) and differential geometry

2. Fluctuating order and high Tc superconductivity

3. Dualizing non-relativistic quantum elasticity
3.a Quantum nematic orders

3.b Superconductivity: dual Higgs is Higgs

4. The quantum nematic world crystal and Einstein’s space time
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Emergent gravity: general 
covariance

Distances measured by hopping from lattice site  to lattice site, metric:
gµν = δµν + (∂µ uν + ∂ν uµ )

General covariance: metric is defined modulo local translations

3a

4a

Dislocation condensate:
Coherently delocalized dislocations ==> 
distances defined modulo local translations!

Bonus:
Dislocations represent torsion, dislocation 
condensate = Riemann space without torsion 
(like general relativity)!
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Emergent gravity: curvature

Represent curvature (e.g., in 2+1D literally like 
conical defects)
Disclination current (2+1D): 

Θ µν = εµκλ∂κ∂λων , ω µ = 1
4

εµνλ ∂ν uλ − ∂λuν( )

Θµν ≅ Gµν = Rνµ − 1
2

gνµR

In “solid”: disclinations are confined (infinite energy)

In nematic superfluid: deconfined but massive …

corresponds with the (linearized) Einstein tensor:
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Dynamics: double curl gauge fields

Θ µν = εµκλ∂κ∂λων , ω µ = 1
4

εµνλ ∂ν uλ − ∂λuν( )
Disclination currents: one ‘order’ higher in duality

σ µν = εµκλεναβ∂κ∂α hλβ

SWC = d2x dτ∫ 1
4µ

σ µν
2 − ν

1+ ν
σ µµ

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + ihµνηµν

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

ηµν = θµν + ελµκ∂λJνκ

∂µηµν = 0( )

σ µν = ε µκλ∂κ B λν → iB µν J µν , J µν = ε µκλ∂κ ∂ λ uν
P

Recall: ‘conventional’ stress photons ==> only sources are disclinations

Kleinert: double curl stress gauge fields (two forms)

==>

Sources are truely conserved                     ‘defect currents’
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The nematic ‘Lorentz’ crystal

Dislocation melting of the 2+1D ‘Lorentz’ (space-time isotropic) crystal:

(a) Consider topological nematic ==> space-time isotropy.

(b) No preferred time direction ==> glide constraint is 
impossible ==>

Dislocations turn into sources of compressional ‘photons’ ==> 
sound acquires a Higgs mass!

Symmetric = simple version of non-relativistic nematics
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The nematic ‘Lorentz’ crystal

Sdislo = d2∫ xdτ md
2

2
Jµν

2 + iJµνεµκλ∂κ hλν

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Seff ,space = d 2 xdτ 1
4µ

σ µν
2 − ν

1 + ν
σ µµ

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

1
2md

2 σ µν
1

∂ 2 σ µν

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫

Sdiscl = d 2xdτ mθ
2

2
θµν

2 + ihµνθµν

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫

SWC = d 2x dτ∫ 1
4µ

σ µν
2 − ν

1+ ν
σ µµ

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + ihµνηµν

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ηµν = θµν + ελµκ∂λJνκ

σ µν = εµκλεναβ∂κ∂α hλβInput:

Condense dislocations ‘isotropically’,
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Geometrical meaning 

σ µν ≡ Gµν

h µ ν = g µν − δ µ νConsider dual ‘stress’ geometry:

Stress tensor turns into Einstein tensor:

Seff ,space = d 2 xdτ 1
4µ

Gµν
2 − ν

1 + ν
Gµµ

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

1
2m d

2 Gµν
1

∂ 2 Gµν

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫

→ d 2 xdt∫ −g 1
2md

2 Gµν
1

−D2 Gµν → − c 3

16πG
d 2 xdt −g∫ R

Non-linear generalization                     , etc;  identify m d
2 = 8πG∂µ → Dµ

At long distances this becomes exactly the Einstein action
Incompressible (2+1 D): shear and compression massive,  
curvature rigidity is still present.



43

Gravitating matter

Disclinations: massive excitations ‘guarding’ the curvature rigidity of 
space

Anti-dislocations do antigravity … Startrek!

Normal matter: gravity is uniformly attractive

Sdiscl = d2xdτ mθ
2

2
θµν

2 + ihµνθµν

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫

Smatter = d 2xdτ hµν Tµν[ ]∫
T - symmetric Belinfante energy-momentum  tensor 

No condensed matter analogy !
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Emergent Einstein Gravity

S = − c 3

16πG
dV −g∫ R + Smatter

Einstein’s space time = the Lorentz invariant topological nematic
superfluid (at least in 2+1D)

A medium characterized by:
- emergent general covariance
- absence of torsion- and compressional rigidity
- presence of curvature rigidity (topological order)
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Plastic Cosmology: the competing 
phases

Our place 

Space-time does not resist 
curvature: matter causes 
catastrophic deflation 

The Lorentz-crystal:  non-
gravitating torsion and 
vacuum pressure 
dominated universe 
(curvature confined)

Fortunately!
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Conclusions

J. Zaanen, Z. Nussinov and S.I. Mukhin, Ann. Phys.  (NY) 310, 181 (2004) 
(cond-mat/0309397) ; H. Kleinert and J. Zaanen, Phys. Lett. A 324, 361 
(2004) (cond-mat/0309379); V. Cvetkovic, S.I. Mukhin, J. Zaanen, in 
preparation.

• Condensed matter physics: strongly correlated superconductors

• Allegory or the holy truth?  Subject for the Theology Department!

• Waiting for experiments

• Relativistic generalization: emergent gravity.

The quantum nematic orders
The Meissner phase as the dual dislocation condensate

Makes sense in 2+1D, 3+1D generalization?


