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OVERVIEW
• We suggest a model for the oscillator on complex projective 

spaces CPN, which is superintegrable. We construct the quantum 
oscillator interacting with a constant magnetic field B on CPN, as 
well as on the non-compact counterparts, i.e. the N-dimensional 
Lobachewski spaces LN.

• We find the spectrum and the complete basis of wavefunctions. 
Surprisingly, the inclusion of B does not yield any qualitative 
change in the energy spectrum.

• For N>1 B does not break superintegrability of the system, 
whereas for N=1 it preserves exact solvability.

• We extend the results to cones constructed over CPN and LN and 
perform a Kustaanheimo-Stiefel transformation, in the N=2 case, 
to 3-dimensional Coulomb-like systems.
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INTRODUCTION
• The harmonic oscillator plays a fundamental role in quantum 

mechanics. On the other hand, there are few articles related 
with the oscillator on curved spaces.

• The most known generalization of the Euclidean oscillator is 
the oscillator on curved spaces with constant curvature 
(sphere and hyperboloid) [Higgs (1979); Leemon (1979)] given by the 
potential

• This system received much attention since its introduction
[Barut, Inomata, Junker (1987) (1990); Bonatsos, Daskaloyannis, Kokkotas (1994); 
Grosche, Pogosyan, Sissakian (1995); Kalnins, Miller, Pogosyan (2002)] and is 
presently known under the name of “Higgs oscillator”.
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INTRODUCTION
• Recently the generalization of the oscillator to  Kaehler spaces 

has also been suggested, in terms of the potential [Bellucci, 
Nersessian PRD2003]

• Various properties of the systems with this potential were 
studied [Bellucci, Nersessian PRD2003; Nersessian, Yeranyan JPA2004; 
Bellucci, Nersessian, Yeranyan PRD2004; Bellucci, Nersessian 2004]. 

• It was shown [BN PRD2003] that on the complex projective 
spaces CPN such a system inherits the whole set of rotational 
symmetries and part of the hidden symmetries of the 2N-
dimensional flat oscillator.
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INTRODUCTION
• Then [NY JPA2004], the classical solutions of the system on CP2, 

L2 (the noncompact counterpart of CP2) and the related cones 
were presented, and the reduction to three dimensions was 
studied. Particulary, it was found that the oscillator on some 
cone related with (CP2, L2) yields, after Hamiltonian reduction, 
a Higgs oscillator on the three-dimensional sphere (two-sheet 
hyperboloid) in the presence of a Dirac monopole field.

• Thirdly [BNY PRD2004], we presented exact quantum mechanical 
solutions for the oscillator on CP2, L2 and related cones. We 
also reduced these quantum systems to 3d and performed 
their (Kustaanheimo-Stiefel) transformation to 3d Coulomb-like 
systems.

• The ``Kaehler oscillator'' is a distinguished system with 
respect to supersymmetrisation as well. Its preliminary studies 
were presented in [BN 2004], [BN PRD2003].
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INTRODUCTION
• In this talk we present an exactly solvable model of the 

quantum oscillator on CPN, LN and related cones in the 
presence of a constant magnetic field.

• Our model can be useful in higher-d quantum Hall effect 
(QHE). This theory was formulated initially on the 4d sphere 
[Zhang, Hu (Science 2001)] and further included as a particular case, 
in the theory of QHE on complex projective spaces [Karabali, Nair 
(NPB2002); Bernevig, Hu, Toumbas, Zhang (PRL2003); Fabinger (JHEP2002); 
Bellucci, Casteill, Nersessian (PLB 2003); Karabali, Nair (NPB2004); Hasebe, 
Kimura (2003)].

• The latter version is based on quantum mechanics on CPN in 
a constant magnetic field. Our  basic observation  is that the 
inclusion of the constant magnetic field does not break any 
existing symmetries of CPN-oscillator and, consequently, its  
exact solvability is preserved.
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INTRODUCTION
• Let us consider first the (classical) oscillator on R2N=CN. It is 

described by the symplectic structure and Hamiltonian

• It has a symmetry group U(2N) given by the generators of 
SO(2N) rotations

and the hidden symmetries
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INTRODUCTION
• The oscillator on CPN (for N>1) [Bellucci, Nersessian (2003)] and that 

on Lobacewski space LN are defined by the same symplectic
structure as above (3) with Hamiltonian

• The choice ε =1 corresponds to CPN and ε =-1 is associated 
to LN. This  system inherits only part of the rotational and 
hidden symmetries of the CN-oscillator given, respectively, by 
the following constants of motion:

• where J+, J- are translation generators. J defines U(N) 
rotations, while I is just a CPN counterpart of (7).
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INTRODUCTION
• In order to include a constant magnetic field, we have to 

leave the initial Hamiltonian unchanged and replace  the 
initial symplectic structure (3) by the following one:

• where g is a Kaehler metric of the configuration space. N.B. 
the inclusion of a constant magnetic field preserves only the 
symmetries of the CN-oscillator generated by J and I. On the 
other hand, the inclusion of the magnetic field preserves all 
symmetries for the oscillator on CPN.

• Hence we can be sure that the CPN-oscillator preserves its 
classical and quantum exact solvability in the presence of a 
constant magnetic field.
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

• Next, we formulate the Hamiltonian and quantum-mechanical 
systems describing the CPN and LN- oscillators in a constant 
magnetic field and present their wavefunctions and spectra. 
We will also extend these results to the cones and discuss 
some related topics. The classical Kaehler oscillator in a 
constant magnetic field is defined by the Hamiltonian

and the Poisson brackets corresponding to the symplectic
structure (10)
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD
• Its canonical quantization assumes the following choice of 

momenta operators:

where ∂a=∂/∂za, Ka=∂K/∂za (non Hermitean momenta operators: 
can be redefined). The quantum Hamiltonian looks  similar to 
the classical one

• In the specific case of the complex projective space CPN and 
its noncompact version, i.e. the Lobacewski space LN, we 
have to choose
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

• The scalar curvature R is related with the parameter r0 : R=2ε
N(N+1)/r0

2.
• These systems  possess the u(N) rotational symmetry 

generators

and the hidden symmetry defined by the generators

where Ja are the translation generators
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

• The Hamiltonian (14) can be rewritten as follows:

where

• J2 is the quadratic Casimir of the SU(N) momentum operator 
for N>1, and J=J0 for N=1.

• In order to get the energy spectrum of the system, let us 
consider the spectral problem
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD
• Go to 2N-dimensional spherical coordinates (x,Φi), where 

i=1,…, 2N-1, x is a dimensionless radial coordinate taking 
values in the interval [0,∞) for ε=+1, and in [0, 1] for ε=-1, and Φi
are appropriate angular coordinates. There is a convenient 
algorithm for the expansion of “Cartesian” coordinates to 
spherical ones. In the new coordinates the system can be 
solved by choosing the wavefunction:

where D is the eigenfunction of the operators J2,J0. It can be 
explicitly expressed via 2N-dimensional Wigner functions 
Dj

s(Φi)=Σmi
cmi

Dj
{m-i},s(Φi), where j, mi denote total and 

azimuthal angular momenta and s is the eigenvalue of J0
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

The energy spectrum is degenerate (as E depends on n+j) and 
reads

or, explicitly,

• The spectrum is infinite on CPN and finite on LN

Here n is the radial quantum number with the following range of 
definition:
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

• The regular wavefunctions, which form an orthonormal basis 
of the Schroedinger equation above, read

• The normalization constants are defined by
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD
• The magnetic flux µB is quantized for ε=1 and nonquantized for 
ε=-1.

• In the flat limit r0
2→∞ we get the correct formula for the 2N-

dimensional oscillator energy spectrum

i.e. n=2n+2j becomes the ``principal'' quantum number.
• Thus we get the following wonderful result: the inclusion of a 

constant magnetic field does not change the degeneracy of the 
oscillator spectrum on CPN and LN.

• For N=1, i.e. on complex projective plane and Lobacewski
plane, s=j, hence the spectrum is nondegenerate.
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

• For N>1 the spectrum depends on s and n, i.e. it is degenerate in 
the orbital quantum number j. This degeneracy is due to the 
existence of a hidden symmetry.

• On the other hand, for N=1 the complex projective plane/ 
Lobacewski plane coincides with the sphere/two-sheeted 
hyperboloid, while on these spaces there exists an oscillator 
system (Higgs oscillator) possessing a hidden symmetry. However, 
the inclusion of the constant magnetic field not only breaks the
hidden symmetry (and the degeneracy of the energy spectrum) of 
that system, but makes it impossible to get the exact solution of its 
Schroedinger equation. So, opposite to the Higgs oscillator case, 
the Kaehler oscillator on a two-dimensional sphere/hyperboloid 
behaves, with respect to the magnetic field, similarly to the planar 
one.
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OSCILLATOR IN A CONSTANT MAGNETIC FIELD

• In free particle limit, i.e. for ω = 0, the energy spectrum is 
described by the principal quantum number J, which plays the 
role of the weight of the SU(N+1) group (when ε =1), and the 
SU(N.1) group (when ε = -1).

• For example, when ε =1, the energy spectrum reads

• Now, the ground state becomes degenerate: the lowest 
value of J is equal to |µB|/2.

• Just this degeneracy plays a key role in the use of quantum 
mechanics on CPN in the theory of the higher dimensional 
quantum Hall effect.
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CONIC OSCILLATOR
• Our results can be extended to the family of ν-parametric 

cones (over CPN and LN) defined by the Kaehler potential

N.B.: these cones have a non-constant curvature R (for ν≠1).

• The energy E is defined as before

while the parameters δ and j1 look as follows:
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CONIC OSCILLATOR
• Thus, wavefunctions and energy spectrum of the conic 

oscillator are defined, respectively, by the expressions

• The normalization constants Ccone are of the form Ccone=C/νN/2, 
where C are still defined by the expressions
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CONIC OSCILLATOR

• Explicitly (plugging expression of δ), the energy 
spectrum of the conic oscillator reads

• Hence, the spectrum becomes non degenerate:
because j1 is a nonlinear function of j, contrary to 
the ν=1 case.
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KS-TRANSFORMATION
• There is a well-known Kustaanheimo-Stiefel (KS 1965) 

transformation relating the 4d oscillator with the 3d Coulomb (and 
MIC-Kepler Zwanziger 1968, McIntosh-Cisneros 1970) system.

• It allows for a straightforward extension to the oscillator on the 4d 
sphere S4 and two-sheet hyperboloids H4 (Nersessian, Pogosyan
PRA2001). The KS-transformation of the oscillator on S4, H4 yields 
the MIC-Kepler system on a 3d two-sheet hyperboloid. 

• We generalize here the KS transformation to the oscillator on CP2 

and L2 and related cones. We show that it results in a MIC-Kepler
system on 3d cones over H3 equipped with the metric (Bellucci, 
Nersessian, Yeranyan PRD2004):
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KS-TRANSFORMATIONS
• The Hamiltonian of the system is given by the expression

• The coordinates of the initial and final systems are related as:

• The energy and coupling constant γ of this system are defined 
by the energy and frequency of the respective 4d oscillator. 
The quantum number s=±0,½,1,… becomes a fixed parameter 
(“monopole number”), and instead of (23):
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KS-TRANSFORMATIONS
• It appears that applying the KS-transformation to the 4d 

oscillator in a constant magnetic field, we have to get the 
modification of the MIC-Kepler system on the 3d hyperboloid 
(and related cones), which nevertheless remains 
superintegrable (exactly solvable).

• Surprisingly, repeating the whole procedure, we find that the 
inclusion of a magnetic field in the initial system yields, in the 
resulting system, a redefinition of the
coupling constant γ and the energy ε only

• We can now convert the energy spectrum of the oscillator in 
the energy spectrum of the MIC-Kepler system

where j1 is still defined by the expression (37).
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SUMMARY AND CONCLUSIONS
• We have shown that the inclusion of a constant magnetic field 

preserves the hidden symmetries of the oscillator on the 
complex projective space CPN, in its noncompact version, i.e. 
the Lobacewski space LN.

• We constructed  the complete basis of wavefunctions of these 
systems and their spectra and found that the inclusion of a 
constant magnetic field does not change the qualitative 
quantum properties of the systems. In particular, the inclusion 
of the magnetic field does not change the degeneracy of the 
energy spectra.

• These results are extended to the oscillators on cones related 
with CPN and LN.

• In some sense, we have shown that the oscillators on CPN and 
LN (with and without constant magnetic field) are more similar 
to the oscillator on CN in the presence of a constant magnetic 
field, than to the one in its absence.
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SUMMARY AND CONCLUSIONS
• Another observation concerns the reduction of the 4d oscillator 

and the 3d Coulomb-like system (KS transformation): we 
found, to our surprise, that the oscillators with and without 
(constant) magnetic fields result in the equivalent Coulomb-like 
systems. 

• The oscillator on CP3 does not allow for a reduction to S4

contrary to the Landau problem on CP3, which results in the 
particle on S4 in the presence of an instanton, relating the 
configurations of two different QHE theories (Zhang-Hu with 
Karabali-Nair).

• Notice, that for N=1 our system remains exactly solvable in the 
presence of magnetic field, though it has no hidden 
symmetries.

• In contrast to our model, the well-known Higgs oscillator on 
CPN and LN looses its exact solvability property in the presence 
of constant magnetic field, while in its absence it has hidden 
symmetries.
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SUMMARY AND CONCLUSIONS
• So, one can suppose that the considered system would 

preserve the exact solvability, also in the noncommutative
case.

• Such a modification is interesting due to the interesting 
rotational properties of noncommutative quantum mechanics in 
a constant magnetic field, observed first for the planar case 
[Bellucci, Nersessian, Sochichiu 2001] and later on extended to the two-
dimensional sphere and hyperboloid [Bellucci, Nersessian 2002].

• While the noncommutative planar oscillator with constant 
magnetic field remains superintegrable [Nair, Polychronakos 2001], 
on the noncommutative spheres and hyperboloids only the 
particle systems without potential terms do [Iengo, Ramachandran
2002, Karabali, Nair, Polychronakos 2002].
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