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Start with motivation from “big picture”
Why model and predict weather and climate?

Modeling
• Understand natural environment

– Diagnose interactions and past states
• Evaluate resources
• Enable objective prediction of future states 

Prediction
• Prevent loss of human life and material damage by severe 

weather
• Help planning of transport and other services 
• Aid in environmental and energy planning policies



• Value of modeling and prediction with respect 
to societal and scientific interest critically 
depends on 

degree of accuracy of information
that is contained in the modeled and predicted 
states

• Therefore, it is important to address the   
following questions

1. How is the accuracy evaluated?
2. What controls the accuracy? 



• Regarding question 1 > It is obvious that verification 
of the accuracy of modeled and predicted state 
must involve observations

• Regarding question 2 > The accuracy in weather 
modeling which solves open dynamical system 
governing equations depends on
– initial condition
– boundary conditions
– external forcing
– “free” parameters 
– model error



Data Assimilation
• To achieve accurate modeled and 

predicted system states the control 
parameters must be evaluated accurately 

The data assimilation is 
Estimation of the control parameters by  

“combining” information from 
observations and models  



In summary 

Motivation for the data assimilation is desire to 
accurately estimate what controls the accuracy of 
modeled and predicted states using observations



History of the data assimilation methodology

Gauss wrote in his Theory of motions of the heavenly bodies (1809)  

If the astronomical observations and other quantities on which the computation of 
orbits is based were absolutely correct, the elements also, whether deduced from 
three or four observations, would be strictly accurate (so far indeed as the motion 
is supposed to take place exactly according to the laws of Kepler) and, therefore, if 
other observations were used, they might be confirmed but not corrected. But 
since our observations are nothing more than approximations to the truth, the 
same must be true of all calculations resting upon them, and the highest aim of all 
computations made concerning concrete phenomena must be approximate, as 
nearly as practicable, to the truth. But this can be accomplished in no other way 
than by a suitable combination of more observations than the number absolutely 
requisite for the determination of the unknown quantities. This problem can only 
be properly undertaken when an approximate knowledge of the orbit has been 
already attained, which is afterward to be corrected so as to satisfy all of the 
observations in the most accurate manner possibly.



History of the data assimilation in the weather modeling 
and prediction is much more recent

• Weather prediction as we know it today started with 
Richardson’s  work (1965, original 1922)

• After the second world war the numerical weather 
prediction methods were fast developing in the US and 
Europe  

• The data assimilation, however, started to develop just 
recently in late 1980-es with applications of so called 
estimation and control theories for dynamical systems 
in the weather analysis. 

• The estimation and control theories were originally 
developed in applied mathematics for purpose of 
addressing engineering and signal processing problems



What was done before 1990-es to produce what we defined 
as the control parameters?

– The weather data analysis started since Richardson’s 
famous first NWP attempt 

– The observations are analyzed in space and sequentially in 
time without explicit use of the modeled dynamics 

– The weather data analysis addresses only the evaluation of 
the initial conditions

– Other control parameters are derived mostly from variety 
of long term measurements and educated guesses

• It will be discussed at the end that in the current data 
assimilation techniques many of the control parameters are  
still evaluated using the same approach as in the weather 
data analysis



Data assimilation methodology
Modeled information

• State representation in models

),...,,( 21 nxxxX ≡

Each component is a characteristic such as, for 
example,  temperature, wind, optical depth, 
trace gas concentration, LAI, etc



Probabilistic information

• Let us adopt the view that the information is 
most complete when represented as probability  

)(Xp

The probability of       being true

Simple example

X



Relationship between probability of 
information and accuracy

– Probability of X being true has to be high for X to be 
accurate 

– Which implies that p(X) must have “small spread”

– P(X) should have these properties for all degrees of 
freedom in the modeling/prediction prblem



Generic examples

P(X)

X

Hopeful case Good case Hopeless case

Schematic examples of possible probability 
distribution for X 



Probabilistic information in observations

• Observations are not exactly the truth,  they are 
another information characterized with 

)(Yp

Key property

Observations are by design closer to 
truth than any other information



Desired state 
components

Temperature (N)

Wind (N)

Pressure (N)

Humidity (N)

Cloud properties (N*k)

Soil properties (Ns)

Ocean properties (No)

Aerosols (N*j)

Trace gases (N*i)

Process Parameters (N*p)

Desired state 
components

Temperature (N)

Wind (N)

Pressure (N)

Humidity (N)

Cloud properties (N*k)

Soil properties (Ns)

Ocean properties (No)

Aerosols (N*j)

Trace gases (N*i)

Process Parameters (N*p)

Information about the Atmospheric 
system

X

Y

Measured state 
components

Meteorological station direct 
measurements (M1)

Ground based remote sensing 
(energy; M2)

Satellite remote 
sensing(energy; M3)

Laboratory measurements 
(variety, small volume; M4)

Field measurements (variety, 
small sample; M5)

Geological direct or indirect 
measurements (variety; 
samples; M6)

N >> M



“Ground truth”

• The observations do not span the desired 
(modeled) large space of information about 
the system state 

• The reference truth in the observations is, 
for most part, in different quantities than 
the modeled 



Combining information from models 
and observations

• Difficult to evaluate explicitly but the rule 
provides exact formula for making progress  

Bayes’ rule

Prior (model)Posterior

state after  
assimilation

∫
=
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observations



Data assimilation problem in probabilistic 
formulation

• Find best solution for            , where the 
best is defined by one of the following 
criteria on the posterior probability

– Minimum variance
– Maximum likelihood
– Maximum entropy reduction

)/( YX t



Solutions for the best estimate given 
the criterion

• Mean of distribution is the solution for the minimum 
variance criterion 

• Maximum P(X) is the solution for the maximum likelihood 
criterion

[ ]dXXMYXPYXPPS tt∫−= )(/)/(ln)/()(

• Entropy  reduction: the change in the logarithm of the 
number of distinct possible internal states of the system 
being observed, consistent with the change in knowledge of 
the system resulting from observations

entropy



•Most commonly used criteria are minimum 
variance and maximum likelihood

•Next we discuss how to transform the problem 
that is defined in terms of the  probability 
distributions to what is much more familiar: the 
control parameters in weather models (initial 
and boundary conditions, free parameters, 
model error, etc)



Assumption for probability 
distribution

– To apply Bayes’ rule the distribution 
functions have to  be assumed for

and)/( tXYp )/( XXp t

)/( YXp t functional form is obviously the 
consequence of

∫
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– Prior/model may or may not not have significant 
impact depending on the strength of observational 
constraint and the measurements’ information 
content

)/( XXp t could be shaped 
or “flat”

– Probability of observations relative to truth in the 
observation space is  

unimodal with small variance )/( tXYp



Most common assumption

Normal or Gaussian distribution

Consequence

•Given the Gaussian probability distribution            is found 
by maximizing the posterior probability which is the same as 
minimizing the variance and 

the solution is exactly the mean of .  
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z stands for either                ,                    or)/( tXY )/( YX t )/( XX t
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Recall from Generic example

P(X)

X

Good case

•The Gaussian distribution has the same mean 
and maximum

•It is characterized with only 2 parameters: 
mean and covariance matrix



How is the solution derived in terms 
of control parameters given the 

Gaussian distribution?

There are two commonly used techniques:

1. Variational (1+N-DVAR)
1 stands for time and N for spatial dimensions 

2. Kalman Filter
linear, extended and ensemble



In either technique the following applies
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)( kX τ model state at time instance k,  the observation time

)( kY τ observation state at the same time

YX εε , model and observation errors, respectively

H mapping for the model into observation space  

M model operator

α bX free parameters and boundary conditions, respectivelyand
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Under the assumption of the Gaussian probabilities in 

the product on the rhs will be maximized if the following is 

minimized 

X
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Where R,  B and Q are observation,  prior and model error  
covariance matrices, respectively

•In this expression the initial and boundary conditions and free 
parameters are folded into one prior vector ζ



In the variational techniques the minimization of F is 
solved as the control theory problem using algorithms 
for finding minimum of the function F subject to the 
control by the initial conditions, boundary conditions, 
free parameters or model error over a prescribed time 
period. 

In the techniques based on the Kalman Filter 
approach the minimum of F is found by updating  the 
initial condition and model error mean state as well as 
the associated covariance matrices, sequentially over 
time



There is no time in this lecture to derive the data 
assimilation algorithms in detail. Please refer to the 
following references

Le Dimet, F. X, and O. Talagrand, 1986: variational algorithms for analysis 
and assimilation of meteorological observations. Tellus, 38A, 97-110.

•Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. 
Japan, 75, 257-288.

•van Leeuwen, P., 2001: An Ensemble Smoother with Error Estimates. Mon. 
Wea. Rev., 129,  709–728.



Summary and Notes
• The purpose of data assimilation is to improve accuracy of 

control parameters in weather models

• The data assimilation methodology always includes 
information from the modeled time evolution

• Currently used techniques are variational and Kalman Filter 
based, which both assume that probabilities associated with 
the modeled/predicted state and observations are Gaussian

• The Gaussian assumption implies that propagation of the 
state and associated errors in time is quasi-linear

• Model error has been introduced just recently in the set of 
control factors 


