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Currently used data assimilation 
techniques in NWP

• 4DVAR
– Operational versions:  ECMWF, British and French 

Met Offices
– Research versions in USA at NCAR, CSU, NCEP and 

FSU

• Ensemble KF 
– Used for operational NWP in Canada
– Research versions in USA at NCAR, NOAA and CSU



Basic properties of 4DVAR
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Minimization of 

is performed by 

1. Evaluating directional gradients of F with respect to 
control parameters,        and 

• The gradients are computed using ADJOINT model

2. The gradients are then used in iterative minimization 
algorithms to find the optimal 
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4DVAR assimilation  procedure

time
observation observation observation
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Basic properties of EnKF
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Update of 
ensemble mean 

Update of 
covariance 

Kalman gain 
matrix 

• k is time index

•N is number of ensemble members; it 
varies depending on application 

•EnKF is sequential algorithm 

f
kP Forecast error 

covariance matrix 



Examples

1. Estimation of cloud properties in 4D using 
cloud resolving model and high resolution 
geostationary satellite observations  

2. Improvement of heavy precipitation  forecast 
by assimilation of surface precipitation 
observations and estimation of model error

3. Convective system dynamical initialization 
using radar observations  



EXAMPLE 1



Cloud properties in 4D from satellite 
observations

Vukicevic et al. (2005, JAS)
Motivation: Analysis of 3D structure and evolution of clouds is 
important for improved understanding of the role of clouds in 
the atmospheric system and for NWP of clouds and 
precipitation 

• Data assimilation technique: 4DVAR with cloud resolving 
version of RAMDAS (Regional Modeling and Data Assimilation 
System, CIRA at Colorado State University)

• Observations : Geostationary Operational Environmental 
Satellites (GOES) imager IR brightness temperatures

• Case: Multi layered non-convective cloud evolution in south-
central US



Cloud resolving model (CRM) properties

• Bulk, 2 moment cloud microphysics for ice: 
pristine ice, aggregates, snow, graupel and hail 

• 1 moment for liquid: cloud droplets 
• Prognostic mixing ratio and number 

concentration in 3D
• Assumed Gamma size distribution with 

prescribed width
• Nonhydrostatic dynamics 
• Regional simulations with initial and boundary 

conditions from synoptic scale  weather 
analysis



CRM simulation without data assimilation is not 
accurate but has skill

CRM simulation in 
360000       by 17   

domain  started from 
crude 4D weather 
analysis 

2km km

Mixed 
phase

Pristine 
ice

Liquid 
cloud

rain

Horizontal 
circulation

Vertical 
circulation

Downscaling from crude weather analysis



GOES         Wavelength Central         Detector
Channel             (µm)          Wavelength  Resolution

(µm) (km)
___________________________________________

1 0.52-0.72 0.7 1
2 3.78-4.03 3.9 4       
3           6.47-7.02 6.7 8       
3         G12   5.77-7.33 6.5                4       
4 10.2-11.2 10.7 4        
5 11.5-12.5 12.0 4        
6          G12   12.9-13.7        13.3                8        

GOES imager observations

15 minute 
data

VIS
Near IR

Diff between ice 
and water   

clouds

IR water 
vapor

IR clouds 
and surface

IR clouds, 
surface and 
low level 

vapor

IR windows

visible



Transformation from the CRM into GOES 
observation space

y
tXHy ε+= )( Greenwald et al. (2003, 

MWR)
Gas absorption: OPTRAN 
(McMillin et al., 1995)
Cloud properties: 

Anomalous Diffraction 
Theory 
Solar: SHDOM (Evans, 1998)
IR: Eddington two-stream 
(Deeter and Evans 1998) 
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4DVAR cloud study results

BEFORE ASSIMILATION

*
ARM central site

Optically thin 
cirrus

prior Observations posterior

AFTER  ASSIMILATION

10e-04 g/kg

10e-03 g/kg

10e-02 g/kg

+ =

Model 
3D 

cloud

2D

Tb

Sequence every 15 min End time shown

Central 
USA



Skill of the estimate in 4D cloud study in 
the observation space

mean = 0.3 K

sd = 5.9 K
mean = 33 K

sd = 8.2 K

Prior errors Posterior errors
Brightness Temperature errors in mµ7.10



Verification of the estimate in 4D 
cloud study against independent obs

ARM Cloud Radar reflectivity

Before assimilation

After assimilation

observations

Time 

Ice cloud

Liquid cloud
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Verification of the estimate in 4D 
cloud study against atmospheric sounding 

observations
Mixing ratio 

error
Temperature 

error

Ice cloud 
layer



More observations better result

Single channel 
assimilations, 30 min 
frequency

2-channel assimilation, 
30 min frequency

2-channel assimilation, 
15 min frequency

GuessWorst

Best

mµ7.10 mµ0.12

Tb errors



4D cloud study conclusions
• Modeled ice cloud significantly improved by the GOES imager 

IR observations 

• Modeled liquid cloud not improved
– IR observations not sensitive to liquid below ice clouds

• Modeled cloud environment slightly improved
– Need other observations to improve it

• More frequent observations and combined channels produce 
better cloud estimation

• Linear model error does not work well for the cloud resolving 
model



EXAMPLE 2



Improving extreme precipitation forecast by 
advanced 4D assimilation of  precipitation 

observations
Zupanski et al. (2002, MWR)

Motivation: Accurate prediction of extreme 
precipitation events is critical for minimizing material 
damage and optimizing services 

• Data assimilation technique: 4DVAR with regional 
national weather forecast model (Eta-model system in 
the USA) 

• Observations : Conventional operational weather 
observations plus surface precipitation

• Case: US East Coast Blizzard of 2000 



24-h accumulated precipitation fcst
3DVAR NCEP STAGE IV

•• 3DVAR precipitation fcst incorrect, missed heavy 
precipitation over Carolinas Dusanka Zupanski,  CIRA/CSU

Zupanski@CIRA.colostate.edu

Precipitation 
observations

Eta forecast starting from 
3DVAR weather analysis



• Amount and location of 4DVAR precip fcst correct 

24-h accumulated precipitation fcst
4DVAR NCEP STAGE IV

Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu

Eta forecast starting from 
4DVAR assimilation



24-h accumulated precipitation difference:
4DVAR (precip + model err) - 4DVAR (basic)

24-h fcst 36-h fcst

• In 4DVAR, precipitation  assimilation and model error 
adjustment  have significant positive impact 

Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu



Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu

OPTIMAL IC OPTIMAL MODEL ERROR

DIFFERENCE: 2-3 ORDERS OF MAGNITUDE
Initial condition and model error corrections 



Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu

TIME EVOLUTION OF OPTIMIZED MODEL ERROR



Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu

TIME EVOLUTION OF OPTIMIZED MODEL ERROR



Dusanka Zupanski,  CIRA/CSU
Zupanski@CIRA.colostate.edu

TIME EVOLUTION OF OPTIMIZED MODEL ERROR

Model error is characterized with fast 
propagation



Zupanski et al (2002) conclusions

• Assimilation of precipitation significantly 
improves the analysis and prediction of 
precipitation 

• Including of the model error control 
parameter has positive impact on the 
assimilation 



EXAMPLE 3



Convective scale short term prediction model 
initialization by doppler radar observations

Snyder and Zhang (2003. MWR)

Motivation: Improved analysis of convective scale 
weather is desirable to extend the accuracy of short 
term severe weather warning  

• Data assimilation technique: Ensemble KF with 
convection resolving model (NCAR, USA)

• Observations : Doppler radar radial velocity

• Case: Isolated super-cell thunderstorm



Experiment design

• Synthetic observations of doppler radar 
radial velocity

• Reference simulation initialized from 
single atmospheric sounding

• 50 ensemble members
• 80 min simulation with 2 km grid 

resolution
• Perfect model assumption



Ensemble models correlations between 
observed and unobserved quantities

Location of 
observed 
radial 
velocity



Snyder and Zhang (2003) conclusions

• EnKF can be applied to convective scale 
initialization using high temporal 
resolution radar data and skilled model

• Model error should be included



Summary
• The data assimilation is powerful approach to 

improving the accuracy of modeled and predicted 
weather at all scales 

• The data assimilation techniques (4DVAR and EnKF) 
are computationally expensive but the benefits 
should outweigh the cost

• Research challenges in the data assimilation:
– Treatment of non_Gaussian probability distributions

• Important when nonlinear processes are dominant
– Model dependent model error formulation

• Convective and cloud scale models need nonlinear model error
– Optimal use of large volume of satellite measurements

• Information content optimization


