

International Atomi Energy Agency

1) Workshop on Design and Use of Regional Weather Prediction Models, April 11 - 19

2) Conference on Current Efforts Toward Advancing the Skill of Regional Weather Prediction. Challenges and Outlook, April 20 - 22

301/1652-4

Data Assimilation in Regional Modeling & Prediction Lecture II

Applications of 4DVAR & Ensemble KF Techniques

T. Vukicevic Cooperative Institute for Research in the Atmosphere, CSU, Ft. Collins & Program in Atmospheric and Oceanic Sciences, CU, Boulder, USA

Data Assimilation in Regional Modeling and Prediction Lecture II Applications of 4DVAR and Ensemble KF techniques

Dr. Tomislava Vukicevic

Affiliations: Cooperative Institute for Research in the Atmosphere, CSU, Ft. Collins and Program in Atmospheric and Oceanic Sciences, CU, Boulder, USA E-mail tomi@cira.colostate.edu

Currently used data assimilation techniques in NWP

- 4DVAR
 - Operational versions: ECMWF, British and French Met Offices
 - Research versions in USA at NCAR, CSU, NCEP and FSU
- Ensemble KF
 - Used for operational NWP in Canada
 - Research versions in USA at NCAR, NOAA and CSU

Basic properties of 4DVAR

Minimization of

$$F = \frac{1}{2} (H(X^{t}) - y)^{T} R^{-1} (H(X^{t}) - y) + \frac{1}{2} (\zeta^{t} - \zeta)^{T} B^{-1} (\zeta^{t} - \zeta) + \varepsilon_{X}^{T} Q^{-1} \varepsilon_{X}$$

is performed by

- 1. Evaluating directional gradients of F with respect to control parameters, $\frac{\partial F}{\partial \zeta}$ and $\frac{\partial F}{\partial \varepsilon_x}$
 - The gradients are computed using ADJOINT model
- 2. The gradients are then used in iterative minimization algorithms to find the optimal $\boldsymbol{\zeta}$

4DVAR assimilation procedure

Basic properties of EnKF

$$\overline{X_{k}^{e}} = \overline{X_{k}^{f}} + K(X_{k}^{o} - H\overline{w_{k}^{f}}) \qquad \text{Up}$$

$$\overline{X_{k}^{f}} = N^{-1} \sum_{n=1}^{N} X_{kn}^{f}$$

$$P_{k}^{f} H^{T} = (N-1)^{-1} \sum_{n=1}^{N} (X_{kn}^{f} - \overline{X_{k}^{f}})(H)$$

Update of ensemble mean

 $P_{k}^{f}H^{T} = (N-1)^{-1}\sum_{n=1}^{N} (X_{kn}^{f} - \overline{X_{k}^{f}})(HX_{kn}^{f} - H\overline{X_{k}^{f}})^{T}$

$$K = P_k^f H^T (H P_k^f H^T + R)^{-1}$$

of Forecast error k covariance matrix

\cdot k is time index

•N is number of ensemble members; it varies depending on application

Kalman gain

matrix

EnKF is sequential algorithm

- 1. Estimation of cloud properties in 4D using cloud resolving model and high resolution geostationary satellite observations
- 2. Improvement of heavy precipitation forecast by assimilation of surface precipitation observations and estimation of model error
- 3. Convective system dynamical initialization using radar observations

EXAMPLE 1

Cloud properties in 4D from satellite observations

Vukicevic et al. (2005, JAS)

Motivation: Analysis of 3D structure and evolution of clouds is important for improved understanding of the role of clouds in the atmospheric system and for NWP of clouds and precipitation

- Data assimilation technique: 4DVAR with cloud resolving version of RAMDAS (Regional Modeling and Data Assimilation System, CIRA at Colorado State University)
- Observations : Geostationary Operational Environmental Satellites (GOES) imager IR brightness temperatures
- Case: Multi layered non-convective cloud evolution in southcentral US

Cloud resolving model (CRM) properties

- Bulk, 2 moment cloud microphysics for ice: pristine ice, aggregates, snow, graupel and hail
- 1 moment for liquid: cloud droplets
- Prognostic mixing ratio and number concentration in 3D
- Assumed Gamma size distribution with prescribed width
- Nonhydrostatic dynamics
- Regional simulations with initial and boundary conditions from synoptic scale weather analysis

Downscaling from crude weather analysis

CRM simulation without data assimilation is not accurate but has skill

GOES imager observations

15 minute data

VIS

Near IR Diff between ice and water clouds

IR water vapor

IR clouds and surface

IR clouds, surface and low level vapor

Transformation from the CRM into GOES observation space

Greenwald et al. (2003, MWR) Gas absorption: OPTRAN (McMillin et al., 1995) Cloud properties: Anomalous Diffraction Theory Solar: SHDOM (Evans, 1998) IR: Eddington two-stream (Deeter and Evans 1998)

 $\frac{\partial F}{\partial x} \approx \frac{\partial H}{\partial x}$

4DVAR cloud study results

Skill of the estimate in 4D cloud study in the observation space

Brightness Temperature errors in 10.7 µm

Prior errors

Posterior errors

Verification of the estimate in 4D cloud study against independent obs

ARM Cloud Radar reflectivity

Ice cloud Liquid cloud

Verification of the estimate in 4D cloud study against atmospheric sounding observations

Mixing ratio

Temperature

error error 16 (Bb) (d) 12 Height (km) Ice cloud laver Guess - Obs) (Guess – Obs) Ch4assim – Obs) (Ch 4 assim – Obs) Ch 5 assim – Ob s) (Ch 5 assim – Obs) 0 -2 -6 -4 0 2 6 -5 0 5 10 Mixing Ratio Difference(g/kg) Temperature Difference(K)

More observations better result

Worst

Best

Guess

Single channel assimilations, 30 min frequency

2-channel assimilation,30 min frequency

2-channel assimilation,15 min frequency

4D cloud study conclusions

- Modeled ice cloud significantly improved by the GOES imager IR observations
- Modeled liquid cloud not improved
 - IR observations not sensitive to liquid below ice clouds
- Modeled cloud environment slightly improved
 <u>– Need other observations</u> to improve it
- More frequent observations and combined channels produce better cloud estimation
- Linear model error does not work well for the cloud resolving model

EXAMPLE 2

Improving extreme precipitation forecast by advanced 4D assimilation of precipitation observations Zupanski et al. (2002, MWR)

Motivation: Accurate prediction of extreme precipitation events is critical for minimizing material damage and optimizing services

- Data assimilation technique: 4DVAR with regional national weather forecast model (Eta-model system in the USA)
- Observations : Conventional operational weather
 observations plus surface precipitation
- Case: US East Coast Blizzard of 2000

24-h accumulated precipitation fcst 3DVAR NCEP STAGE IV

24h ACC PREC (mm), 24h FCST FROM 12Z 24 JAN 2000 (3DV)

0 5 10 15 20 25 30 35 50 75 100 125 150 175

 3DVAR precipitation fcst incorrect, missed heavy precipitation over Carolinas
 Dusanka Zupanski, CIRA/CSU Zupanski@CIRA.colostate.edu

24-h accumulated precipitation fcst 4DVAR NCEP STAGE IV

24h ACC PREC (mm), 24h FCST FROM 12Z 24 JAN 2000 (4DV)

15 20 25 30 35 50 75 100 125 150 175

RFC4 24h ACC PREC VALID 12Z 25 JAN 2000

Amount and location of 4DVAR precip fcst correct

Dusanka Zupanski, CIRA/CSU Zupanski@CIRA.colostate.edu

24-h accumulated precipitation difference: 4DVAR (precip + model err) - 4DVAR (basic) 36-h fcst

24-h fcst

24h ACCUM PREC DIFF (ERR,PCP-NOERR,NOPCP mm) 36h FCST FROM 12Z 24 JAN 2000

30 - 25 - 20 - 15 - 10 - 5 - 1 1 5 10 15 20 25 30

In 4DVAR, precipitation assimilation and model error adjustment have significant positive impact Dusanka Zupanski, CIRA/CSU

Zupanski@CIRA.colostate.edu

^{30 - 25 - 20 - 15 - 10 - 5 - 1 1} 5 10 15 20 25

OPTIMAL MODEL ERROR

OPTIMAL IC

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +06h

Initial condition and model error corrections

Dusanka Zupanski, CIRA/CSU Zupanski@CIRA.colostate.edu

TIME EVOLUTION OF OPTIMIZED MODEL ERROR

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +02h

Dusanka Zupanski, CIRA/CSU Zupanski@CIRA.colostate.edu

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +04h

TIME EVOLUTION OF OPTIMIZED MODEL ERROR

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +08h

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +06h

Dusanka Zupanski, CIRA/CSU Zupanski@CIRA.colostate.edu

TIME EVOLUTION OF OPTIMIZED MODEL ERROR

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +10h

del error is characterized with to propagation

Dusanka Zupanski, CIRA/CSU Zupanski@CIRA.colostate.edu

SFC PRESSURE MODEL ERROR (*10*Pa) VALID 00Z 24 JAN 2000 +12h

Zupanski et al (2002) conclusions

- Assimilation of precipitation significantly improves the analysis and prediction of precipitation
- Including of the model error control parameter has positive impact on the assimilation

EXAMPLE 3

Convective scale short term prediction model initialization by doppler radar observations Snyder and Zhang (2003. MWR)

Motivation: Improved analysis of convective scale weather is desirable to extend the accuracy of short term severe weather warning

- Data assimilation technique: Ensemble KF with convection resolving model (NCAR, USA)
- Observations : Doppler radar radial velocity
- Case: Isolated super-cell thunderstorm

Experiment design

- Synthetic observations of doppler radar radial velocity
- Reference simulation initialized from single atmospheric sounding
- 50 ensemble members
- 80 min simulation with 2 km grid resolution
- Perfect model assumption

Ensemble models correlations between observed and unobserved quantities

Location of observed radial velocity

Snyder and Zhang (2003) conclusions

- EnKF can be applied to convective scale initialization using high temporal resolution radar data and skilled model
- Model error should be included

Summary

- The data assimilation is powerful approach to improving the accuracy of modeled and predicted weather at all scales
- The data assimilation techniques (4DVAR and EnKF) are computationally expensive but the benefits should outweigh the cost
- Research challenges in the data assimilation:
 - Treatment of non_Gaussian probability distributions
 - Important when nonlinear processes are dominant
 - Model dependent model error formulation
 - Convective and cloud scale models need nonlinear model error
 - Optimal use of large volume of satellite measurements
 - Information content optimization