The Abdus Salam
International Centre for Theoretical Physics

E‘,
s
“ oD
\“39“
—

Spring Colloquium on
'Regional Weather Predictability and Modeling'
April 11 - 22, 2005

1) Workshop on Design and Use of Regional Weather
Prediction Models, April 11 - 19

2) Conference on Current Efforts Toward Advancing the Skill of Regional Weather
Prediction. Challenges and Outlook, April 20 - 22

301/1652-4

Data Assimilation in Regional Modeling & Prediction
Lecture |l

Applications of 4DVAR & Ensemble KF Techniques

T. Vukicevic
Cooperative Institute for Research in the Atmosphere, CSU, Ft. Collins
&
Program in Atmospheric and Oceanic Sciences, CU, Boulder, USA

Strada Costiera |1, 34014 Trieste, ltaly - Tel. +39 040 2240 11 I; Fax +39 040 224 163 - sci_info@ictp.it, wwwiictp.it



Applications of 4DVAR and Ensemble KF
techniques

Dr. Tomislava Vukicevic

Affiliations:
Cooperative Institute for Research in the Atmosphere, CSU, Ft. Collins and
Program in Atmospheric and Oceanic Sciences, CU, Boulder, USA

E-mail tomi@cira.colostate.edu




Currently used data assimilation
techniques in NWP

+ 4DVAR

- Operational versions: ECMWEF, British and French
Met Offices

- Research versions in USA at NCAR, CSU, NCEP and
FSU

- Ensemble KF

- Used for operational NWP in Canada
- Research versions in USA at NCAR, NOAA and CSU




Basic properties of 4DVAR

Minimization of

F=Z(HX) -y REH(X ) -y)+ (6 =¢) B¢ -0 +21Q %,

is performed by

1. Evaluating directional gradients of F with respect to
control parameters, ¢ and ¢

o¢ 0&y
The gradients are computed using ADJOINT model

2. The gradients are then used in iterative minimization
algorithms to find the optimal ~




4DVAR assimilation procedure

Observation errors
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Basic properties of EnKF

X =X, +K(Xg{ —Hw,) Update of

\
f -1 f
X, =N X
n=1

ensemble mean

covariance

N _ _
Pkf HT — (N _1)_12(kan _xkf )(kafn - H ka )T UpdaTe of
n=1

= pkaT(HpkaT 4 R)—l Kalman gain

|:)f Forecast error
K" covariance matrix

matrix

- k is time index

‘N is number of ensemble members; it
varies depending on application

EnKF is sequential algorithm




Examples

1. Estimation of cloud properties in 4D using
cloud resolving model and high resolution
geostationary satellite observations

. Improvement of heavy precipitation forecast
by assimilation of surface precipitation
observations and estimation of model error

. Convective system dynamical initialization
using radar observations




EXAMPLE 1




Cloud properties in 4D from satellite
observations

Vukicevic et al. (2005, JAS)

Analysis of 3D structure and evolution of clouds is
important for improved understanding of the role of clouds in
the atmospheric system and for NWP of clouds and
precipitation

4DVAR with cloud resolving
version of RAMDAS (Regional Modeling and Data Assimilation
System, CIRA at Colorado State University)

Geostationary Operational Environmental
Satellites (GOES) imager IR brightness temperatures

Multi layered non-convective cloud evolution in south-
central US




Cloud resolving model (CRM) properties

* Bulk, 2 moment cloud microphysics for ice:
pristine ice, aggregates, snow, graupel and hail

* 1 moment for liquid: cloud droplets

* Prognostic mixing ratio and number
concentration in 3D

- Assumed Gamma size distribution with
prescribed width

* Nonhydrostatic dynamics

* Regional simulations with initial and boundary
conditions from synoptic scale weather
analysis




Downscaling from crude weather analysis

Vertical Pristine

CRM simulation in circulation
360000 km?by 17 km

domain started from
crude 4D weather
analysis

Horizontal
circulation

Liquid
cloud
CRM simulation without data assimilation is not

accurate but has skill




GOES imager observations

GOES Wavelength  Central Detector
Channel (um) Wavelength Resolution

(Lm) (km)

0.52-0.72
3.78-4.03

6.47-7.02 15 minute

G12 5.77-7.33
10.2-11.2
11.5-12.5

Gl12 12.9-13.7

IR water IR clouds IR clouds,
Diff between ice vapor and surface surface and

and water low level
clouds vapor




Transformation from the CRM into GOES

observation space

H(Xt)+g

y

State p&\*\\m Cloud Property . Radiative Transfer| __, Radiance
Variables /,\r‘ Model(s) / Model(s)

rC

Gas Extinction
r, > \_ Model(s)

R T—
Yoo Adjoint of CP Adjoint of RT
. 3 P
Gradients “— | Vodels) Viad Jrad

V,dua i (Forcing)

Adjoint of GE

vaJ rad Model(s)

Greenwald et al. (2003,
MWR)

Gas absorption: OPTRAN
(McMillin et al., 1995)

Cloud properties:
Anomalous Diffraction
Theory

Solar: SHDOM (Evans, 1998)

IR: Eddington two-stream
(Deeter and Evans 1998)
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4DVAR cloud study results
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Skill of the estimate in 4D cloud study in
the observation space

Brightness Temperature errorsin~ 10.7 zm

Prior errors Posterior errors
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& Verification of the estimate in 4D
2 \cloud study against independent obs

: Extencied Foclitios Undar Bevelopmant

ARM Cloud Radar reflectivity

Helght {km)

After assimilation

Height km

Before assimilation




Verification of the estimate in 4D
cloud study against atmospheric sounding
observations

Mixing ratio Temperature
error error

Height (km)

{Guass — Obs) ’
= (Ch 4 assim - Obs) = (Ch 4 assim - Obs)_ "
(Ch 5 assim - Obs) (Ch5assim-0bs] ™ =

4

2 0 2 -5 0 5
Mixing Ratio Difference{g/kqg) Temperature Differance(K)




More observations better result

Tb errors
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4D cloud study conclusions

* Modeled ice cloud significantly improved by the GOES imager
IR observations

* Modeled liquid cloud not improved
- IR observations not sensitive to liquid below ice clouds

* Modeled cloud environment slightly improved
- Need other observations to improve it

* More frequent observations and combined channels produce
better cloud estimation

* Linear model error does not work well for the cloud resolving
model




EXAMPLE 2




Improving extreme precipitation forecast by
advanced 4D assimilation of precipitation

observations
Zupanski et al. (2002, MWR)

Accurate prediction of extreme
precipitation events is critical for minimizing material
damage and optimizing services

4DVAR with regional
national weather forecast model (Eta-model system in
the USA)

Conventional operational weather
observations plus surface precipitation




24-h accumulated precipitation fcst

24h ACC PREC jmm%.
24h FCST FROM 127 24 JAN 2000 (3DV)

RFC4 24h ACC PREC VALID 127 25 JAN 2000
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Dusanka Zupanski, CIRA/CSU
Zupanski@CIRA.colostate.edu




24-h accumulated precipitation fcst

24h ACC PREC (mm

241 FosT oM 127 24 AN F000 (401 RFC4 24h ACC PREC VALID 127 25 JAN 2000

Amount and location of 4DVAR precip fcst correct

Dusanka Zupanski, CIRA/CSU
Zupanski@CIRA.colostate.edu




24-h accumulated precipitation difference:

24h ACCUM PREC DIFF (ERR,PCP—NOERR,NOPCP mm)
24h FCST FROM 12Z 24 JAN 2000

36-h fcst

24h ACCUM PREC DIFF (ERR,PCP—NOERR,NOPCP mm)
36h FCST FROM 12Z 24 JAN 2000

In 4DVAR, precipitation assimilation and model error
adjustment have significant positive impact

nka Zupanski, CIRA/CSU
Zupanski@CIRA.colostate.edu



OPTIMAL IC OPTIMAL MODEL ERROR

SFC PRESSURE IC PERT (*10#hP SFC PRESSURE MODEL ERROR (*10#Pa)
VALID 00Z 24 JAN *ﬂﬂ{; ) VALID 00Z 24 JAN 2000 +06h

- Il
-8 =24 =20-16-12 =8B -4 4 8 12 16 20 24 28 —-28 -24 -20-16-12 —B -4 4 B 12 16 20 24 28

Initial condition and model error corrections

Dusanka Zupanski, CIRA/CSU
Zupanski@CIRA.colostate.edu




TIME EVOLUTION OF OPTIMIZED MODEL ERROR

SFC PRESSURE MODEL ERROR (*10+Pa) SFC PRESSURE MODEL ERROR (*10xPa)
VALID 00Z 24 JAN 2000 +02h VALID 00Z 24 JAN 2000 +04h

. T . B
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Dusanka Zupanski, CIRA/CSU

Zupanski@CIRA.colostate.edu



TIME EVOLUTION OF OPTIMIZED MODEL ERROR

SFC PRESSURE MODEL ERROR (10%Pa) SEC PRESBURE MUDEL ERRAR: [i0¥E0)

VALID 00Z 24 JAN 2000 +06h

- I .
-28 -24-20-16-12 -8 -4 4 8 12 16 20 24 28 -28 —24 -20-16-12 -8 -4 4 B 12 16 20 24 28

Dusanka Zupanski, CIRA/CSU
Zupanski@CIRA.colostate.edu




TIME EVOLUTION OF OPTIMIZED MODEL ERROR

SFC PRESSURE MODEL ERROR (*10#Pa)
VALID 00Z 24 JAN 2000 +10h SFC PRESSURE MODEL ERROR (*10#Pa)

VALID 00Z 24 JAN 2000 +12h

~28 -24 -20-16-12 -8 -4 4 8 12 16 20 24 28 TACALTROSIESIE Y B . B I W 0 & A

Model error is characterized with fast

Dusanka Zupanski, CIRA/CSU

propagaTlon Zupanski@CIRA.colostate.edu




Zupanski et al (2002) conclusions

» Assimilation of precipitation significantly
improves the analysis and prediction of
precipitation

* Including of the model error control
parameter has positive impact on the
assimilation




EXAMPLE 3




Convective scale short term prediction model

initialization by doppler radar observations
Snyder and Zhang (2003. MWR)

Improved analysis of convective scale
weather is desirable to extend the accuracy of short
term severe weather warning

Ensemble KF with
convection resolving model (NCAR, USA)

Doppler radar radial velocity

Isolated super-cell thunderstorm




Experiment design

» Synthetic observations of doppler radar
radial velocity

- Reference simulation initialized from
single atmospheric sounding

- B0 ensemble members

» 80 min simulation with 2 km grid
resolution

* Perfect model assumption




Ensemble models correlations between
observed and unobserved quantities
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Snyder and Zhang (2003) conclusions

» EnKF can be applied to convective scale
initialization using high temporal
resolution radar data and skilled model

- Model error should be included




» The data assimilation is powerful approach to
improving the accuracy of modeled and predicted
weather at all scales

+ The data assimilation techniques (4DVAR and EnKF)
are computationally expensive but the benefits
should outweigh the cost

* Research challenges in the data assimilation:
- Treatment of non_Gaussian probability distributions
» Important when nonlinear processes are dominant

- Model dependent model error formulation
- Convective and cloud scale models need nonlinear model error

- Optimal use of large volume of satellite measurements
» Information content optimization




