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Why probabilistic ?

• Uncertainties (errors) of 

- initial conditions

- empirical parameters

- model equations

cause uncertainty (error) of the forecast

• Uncertainties (errors) of observations and of the forecast cause 

uncertainty (error) of the analysis

• Input errors have probability distribution

- commonly assumed Gaussian, but it can be generalized

• The posterior (analysis) distribution depends on the prior probability 

distributions (Bayes theorem)

Probabilistic framework can be used to estimate posterior errors!



Why probabilistic ?

• Probabilistic vs. Deterministic

- Suppose the dynamic equations are deterministic, i.e. suppose there is 

enough information, and huge computers that can calculate all we want

- Even then, since the forecast uncertainty is caused by uncertainties in 

initial conditions, empirical parameters, model equations, lateral boundary 

conditions, etc., need probabilistic forecasting

• Chaotic vs. Deterministic

- Weather and Climate models, as well as many other physical systems and 

models, are chaotic: extreme sensitivity to initial conditions

- There is a preferred (attractor) subspace

- Predicted state vector (forecast) has higher probability to be found in that 

subspace => not simply random

Probabilistic framework can capture it all!



How ?

• Probability Density Function (PDF)

Parameters that can be estimated:

Mean, Mode, Covariance, higher-order moments, …

m

Log-Normal PDF

– mean

m – mode

v - (co)variance

v

- Various estimation methods exist

- Major restriction: highly dimensional PDF

Balance the need for more parameters with computational resources



Statistical PDF parameters

Uni-modal PDF Bi-modal PDF

xxmean
xmode

PDF

xmean xxmode

PDF

Mode – dynamical state with highest probability

Mean – mathematical expectation

Mode vs. Mean

• identical for Gaussian errors (linear operators)

• both are important for non-Gaussian errors (nonlinearity, skewness)



Ensemble Data Assimilation

Maximum Likelihood Ensemble Filter (MLEF):

• maximum likelihood approach (conditional mode)

• no perturbed observations

• directly solve the nonlinear problem using iterative minimization

Ensemble Kalman Filter (EnKF):

• minimum variance approach (conditional mean)

• perturbed, or unperturbed observations

• introduce nonlinearities to the closed-form (linear) KF solution

• Due to nonlinearities of prediction and observation 

operators, the errors are never strictly Gaussian

• EnKF and MLEF differ, therefore both bring new

information to the analysis/prediction PDF problem



Possible Applications

• Data assimilation

• Ensemble forecasting

• Parameter estimation

• Model error estimation

• Targeted observations

• Information content of observations

• Advanced parallel computing

• Predictability, nonlinear dynamics

• Any phenomenon with predictive model and observations: Weather,

Climate, Ocean, Ecology, Biology, Geology, Chemistry, Cosmology, …

- Wide range of applications

- Unified mathematical framework



Data Assimilation

1) Analysis: find optimal mix between the guess and the measurements

2) Uncertainty of the analysis estimate

- Irregular geographic location of observations

- Complex prediction model as a guess

High dimension of unknown parameters:

Need an efficient mathematical algorithm



Example: 2-D problem with single observation

Guess

b

xb
Optimal analysis

Observation

y
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xa
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Forecast uncertainty =b

Observation uncertainty=a
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Methods for linear, low-dimensional problems exist (e.g., Kalman Filter)

Can they be extended to high-dimensions?



Ensemble Forecasting

Kolmogorov Equation
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Probability envelope
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Deterministic prediction

A

B

p – probability density function (PDF)

f – dynamical model

g – stochastic forcing (model error)

Ensemble forecasting can be viewed as an approximate solution

method for the Kolmogorov equation



Ensemble Forecasting

1) Find forecast PDF 

• PDF parameters: mean, mode, covariance

2) Initial ensemble perturbations

• random search (Monte Carlo) – inefficient for high dimensions

• dynamically significant subspace – efficient, but need to know where

• Operational ensemble forecasting

- adjoint method (ECMWF)

- breeding method (NCEP)

- EnKF method (Canadian Met. Service)

- Important to include all components in a single system

- Determine likelihood of predicted weather event

Unification of data assimilation and ensemble forecasting improves both !



Parameter Estimation

• Estimate empirical parameters:

- coefficients (diffusion, …)

- physical parameterization (cumulus convection, …)

• Generally, empirical parameter are not observed 

• Optimal parameter values may be dynamically, or season dependent

• Strategy: Utilize indirect observations to improve parameter values

Ensemble assimilation/prediction provides most general framework for

parameter estimation !



Parameter Estimation

State augmentation approach
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xa – analysis from previous time (k-1)

– empirical parameter
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Algorithmically simple to implement, even for most complex models !



Model error estimation

nn M n1 xx – model correction (bias, random error)

nn M n1 xx

Including model error allows realistic fit to observations



Model error estimation

• Scale/phenomenon representation error

- Errors in model equations

- Physical parameterization scheme

• Random error, bias

• Estimate of model error relies on indirect observations

Advantage of using ensemble assimilation/prediction:

Uncertainty of model error

• Until now, the uncertainty of model error was ALWAYS PRESCRIBED!

• Within ensemble framework:

- we can estimate uncertainty

- the uncertainty evolves in time

- there is a dependence between the model error and model state

Probabilistic tool to learn about models and how to improve them !



Model error and parameter estimation in MLEF

State augmentation approach
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Model error and parameter estimation  with 

KdVB model

IMPACT OF INCORRECT DIFFUSION
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Significant cross-correlation between initial conditions and model error



Targeted observations

Observing system which adapts to dynamically significant changes

Why targeted observations?
• It is impossible to observe everything (all possible variables), 

everywhere (finest spatial and temporal resolution)

• Even if it would be possible, sky-rocketing costs 

Strategy:
• Observe where it matters the most

• Determine the most likely error growth (area and variable) 

• Remote sensing, aircraft, …

Self-controlled system:
• Know when, where, what to observe

• Improve where is needed the most



Targeted observations

Map summarizing the extra observations taken during the FASTEX experiment for IOP 17. The 

black track identifies the location of the cyclone minimum pressure, the colored tracks the aircraft 

missions, and the red symbols additional radio-soundings (from Montani et al. 1999).

Great interest of operational weather centers to 

optimize observation network + minimize cost



Information content

• Information content of observations is at the heart of the problem

• Assimilation/prediction system benefits from new information, not 

necessarily from more observations 

Design a system that makes decisions based on 

the information content of observations ! 



Information content

• True degrees of freedom of an assimilation/prediction system are

determined by the information content of observations and of model 

state

• The minimal basis of the analysis correction subspace is determined 

from the singular vectors of the information content matrix: 

R-1/2HPf
1/2=U VT

Less efficient approaches, traditionally used:

- model space

- observation space

New approach, using ensembles:

- Extract independent information from ensembles

- Minimize the ensemble size, or optimize the utilization of existing 

ensembles



Parallel computing

In realistic weather and climate applications:

• dimension of the state variable is large (grid points x number of variables)

• prediction model is computationally expensive

Computationally most demanding task is ensemble forecasting

- can be efficiently reduced by running ensemble members on separate nodes

- ultimate efficiency: cost of ensemble forecasting = cost of one forecast

Explore options to parallelize the system, based on:

- model state dimensions

- ensemble size (number)

Take advantage of parallel computing development in general

Ensemble assimilation/prediction enables superior parallel performance



Predictability

Lorenz equation illustrates the complexity of attractor subspace



Predictability

• Highly nonlinear problem

• Probabilistic problem

• Multi-modal PDFs

• Coupled models

In order to learn about model predictability, need:

• Reliable system, close to the truth

- observations

- model error (bias) and its uncertainty

Attractor subspace

• Find the basis

• Estimate dimensions 

Capability to learn about the predictability and 

attractor subspace for most complex models !



Future development and research directions

• Non-Gaussian and multi-modal PDFs

- current assimilation/prediction generally assumes Gaussian errors

- practical system with or without explicit knowledge of PDF

• Probabilistic tool for model development:

- address the important issues in the context of PDFs

- probabilistic view of deterministic models

• Understand predictability of complex weather/climate systems

- find most natural invariant subspace and conservative variables

• Control theory

- algorithms for non-smooth (derivative-free) optimization

Theoretical advancement using realistic systems !
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