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Just in
Eta Model Lectures extratropical

atmosphre !

Key Issues of Atmospheric Dynamics

1) Process of geostrophic adjustment

2) Slowly changing quasi-geostrophic component
of atmospheric flow

[0 This lecture will address the treatment of these
two dynamical process in the Eta model

[1 More precisely, the lecture will explain how Eta
model approximate the terms in the governing
equations that are responsible for these two
processes, that is:

B Gravity-inertial (adjustment) terms
B Nonlinear momentum advection terms
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How does extratropial atmosphere work?

[1 There is a slowly varying (a quasi-geostrophic)
balance between mass and wind fields

[0 Any forcing (such as, latent heat release during
precipitation, orographic lifting, etc.) pushes
the atmosphere out of balance
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[1 Atmosphere reacts by exciting the gravity-
inertial waves, until a new balance, slightly
different than previous, is established

7/ _

[0 In addition, the quasi-geostrophic flow is slowly
changing by itself — for which the nonlinear
advection is largely responsible
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[0 The process of slipping off the balance and
geostrophic readjustment is in the atmosphere
happening simultaneously

[0 Similarly, the geostrophic adjustment and
quasi-geostophic motion are also happening
simultaneously

[0 It is just convenient for theoretical deliberations
to separate them and consider them separately
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System of shallow water equations

[0 Shallow water model is a simple model that contains
many important solutions as the full 3D atmosphere, and

is therefore often used for theoretical studies

u,v,h=f(x,y,t)
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[0 Linearized system

Basic state is assumed to be
that of zero motions and
with a constant height h=H

We will further assume that
Coriolis parameter f=const

Let us look for solutions of
this system in the form of

g
>

o Ver+ly=ve)

i
I
<i>

Py
=
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[0 By replacing these solutions in the system, it

becomes:

—ivii = —gikh+ ¥
—ivy =—gilh— fi

—ivh = —H (ikii +il)

[0 ... which could be rewritten using matrix
notation as

(=iv)

<O FARELD

=

0 &
= 0

_Hik —Hil

—gik

—gil
0

= S

=
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[1 By a closer inspection, we see that this is a
classical formulation of an eigenvalue problem

AX = AX

1 ... with matrix A, vector x and eigenvalue A

defined respectively as
ESN o 4
A=| —f 0 -l X=|V A =(=iv)
—Hik -Hil 0 h

[1 We can rewrite the eigenvalue equation above

as AX%
|[dentity
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[0 This matrix equation may be rewritten as

(A= ADx=0
0 ...or in the explicit form
v f —gik]|a)
—f v —gil ||v|=0
_—Hik —Hil v . A

[0 For a nontrivial solution is required that the matrix is
singular, that is, that its determinant is equal to zero:

(iv)| (iv)’ = (~gil(~Hil) |- f [ f (iv) — (~giD{(~ Hik)]
+(—gik) [ £ (~Hil) — v )(~Hik)] = 0
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v v+ P+ gH (K +17) |=0
[1 We get two solutions
v=0 Geostrophic mode

V= i\/fz 78 gH(k2 2t [2) Gravity-inertial waves

[1 For g=0 we get pure inertial oscilation
[0 For f=0 we get pure gravity waves

[1 How does the Eta model approximate these
terms?

Spring 2005 ICTP



Eta Model Lectures Miodrag Rancic

E-grid (Eta)

v @ v h v % =—go h+ fv
V
€ ® U & g g6,h— fu
ot
\Y v \
e N %:—H(§xu+§ V)
Ot :
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C-grid
¢ ©© ¢ @ ¢
ou —xy
w v w~ 5——g5xh+fv
¢ @ ¢ @ ¢ %:_g(syh_f;’“’
@ W @ i = —H(§xu + §yv)
Ot
¢ O ¢ @O ¢

Spring 2005 o



Eta Model Lectures Miodrag Rancic

What is the consequence of averaging on
the C-grid ?

[1 Assuming that distance between two points
carrying the same variable is d

N

= b5 : : 2 A = 2
A :A(ez(kd/2+ld/2)_|_ez(kd/2 ld/2)_|_ez( kd/2+ld/2)_|_ez( kd /2 ld/2))
= Acos(kd /2)cos(ld/2)= Acos X cosY

[0 Note that for the shortest resolvable wave
k=2n/2d=n/d ——> X=n/2

|=2n/2d=n/d ——> Y=n/2
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[0 Thus, for the pure inertial wave on the C-grid,
we get the following solution for numerical
frequency

(ﬁj =cos X cosY
f
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Gravity waves on the C-grid

¢ ® ¢ @ ¢ i
® ® o 5—_@’5)]’
gk
¢ 6 O ¥ 7
oh
« < ¢ s —H(§xu + §yv)
¢ O ¢ @ ¢
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Rossby Radius of Deformation

[0 A spatial scale that describes properties of
geostrophic adjustment

L oNgH
1 In the general case,fnumerical frequency will
depend on (A/d)

[0 Because frequency of inertial waves tends to
be erroneously presented for the short waves,
it can be shown that in general case C-grid has
difficulties to describe geostrophic adjustment
for the small static stability when (A/d) is small
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E-grid

[0 There is no averaging of
\Y, \Y, Coriolis term, and
¢ j ¢ : € numerical frequency of
inertial waves is exact

v ¢ v o v [0 The problem represents
simulation of gravity
h Vv h V h waves!
[0 The diagonal rows ‘does
not feel’ perturbation -
v ¢ ¥ € v which creates a two-grid-
interval noise
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[1 4, represents here a distance between two
successive points in x or y direction

Note that the shortest wave that

v @ \{ grid may register is here with the
o wavelength in normal direction of
h V d, h
L =2d.
V h V

Corresponding wavenumber is

270 Ul T
T e =

e
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[0 Thus, for 1D case (1=0), the frequency of the
shortest wave is equal to zero

T

e sin” : d. +sin” 0d,
) SIn” Kd. +SIn” ld., "
v., =gH 7 =gH 7 =0
[1 ... which describes stationary two-grid-interval
noise

[1 This is a potentially serious drawback in high-
resolution simulations at the scales that effect
of Coriolis force may be neglected

1 ... as well as in simulations in tropical region
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[1 A more formal description of this phenomena
may be observed by replacing wave solution in
equations for propagation of gravity waves

ou oV oh

—=—g8h, —=-gbh, —=-H(Su+o
Ot 50 Ot A Ot (u yv)

[0 ...we get the following frequency relation for
the gravity waves

o 2 o 2
sin” kd, +sin” ld,
v, =gH 7
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[0 This two-grid-interval problem may be better
understood by a closer inspection of E-grid

structure
\' ' \'; h u h u h u
@0 @ .
\' \' \'; h u h u h u
o A0 e g
\' \' \'; h U I AU el
@ @@ vy
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[0 Thus, we see that E-grid is made of 2
elementary C-grids

[0 Two-grid-interval noise is essentially a

consequence of separation of solutions on the
elementary C-grids

What to do ?!
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[0 The nature of the problem may also be
observed by considering the implied wave
equation

2
5 @ . % =gH (5,h+0,h)=gHV h

v @V @ y Can we somehow implement Jacobian
@ \Y} @ V @ made of the closest points?

@ ©v
v v s (8,,h+8, 1) =|gHV I
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Solution

[0 Mesinger (1973, 1974) introduced a solution

O In the context of an economical forward-
backward time-differencing scheme

u =u" —g(A)S N
Ve g(At)S h

7+1

Bt g _H(At)(gx” 7 5yv)

+wgH (At (V2 =V )h°

[0 Here, w is a weight factor which is bounded by
0.25 in order to provide numerical stability
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[1 This technigue, known as a modification of the
continuity equation, has been expanded to
various time-differencing schemes (Janjic
1974, 1979)

[0 One clear advantage, in comparison to, for
example, inclusion of diffusion in the
momentum equation, is that it does not affect
geostrophic part of the flow, but just gravity-
inertial terms

It has been generalized to A-grid

There are alternative methods nowadays
(Janjic 2000, Rancic 2005) that require
application of elliptic solvers or solution of
tridiagonal systems

0 O
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Nonlinear Advection Scheme

Ll

Ll

Eta model is a model based on application of
Arakawa conserving principles

One of the key features of the model is
application of Arakawa type momentum
advection scheme formulated on the E-grid

Janjic (1977) formulated an Arakawa type
advection scheme in a vector invariant form
that conserves both enstrophy (3 ) and
kinetic energy of rotational flow 3(u +v2)

defined using E-grid wind components

ICTP
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Janjic (1977) scheme

[0 For a pure nondivergent flow is defined as

i e
e i
8\» 2~xy 1 —xy
BT i

[0 Here, vorticity is defined using E-grid wind

components

§=0v—0u
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Brief review of Arakawa Jacobian

[0 By expanding vorticity written in terms of stream
function in a closed domain using Fourier series, we get

2 D)
6=V Vo = ﬂ“pwp
O .. where ) are eigenvalues of this Laplacian

[0 By applying the same development for the mean kinetic
energy and mean enstrophy, we get

Ez%(u2+v2):%ZZ;w_;:ZKp
P P

1 =12 4y, = 24K, = 2°K
pP P
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[1 Famous Charney (1966) mechanical analogy

From Mesinger (1976)

[0 In other words, the nature of two-dimensional
turbulence is such that energy cannot arbitrary
cascade between different scales — but only in
such a way as to preserve initial energy
balance

[0 Shorter the waves, smaller amount of energy
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[0 E-grid implies definition of stream function and
velocity potential at the position of h scalar

points
Uu=-oy
hwy Y hy Y
T V=0
(ed (D), (v
L v §EOV—O U=

°<i:> * =0,(0w)+6,(0,y)
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[0 Eigenvalues of this discrete + Laplacian are

given by

Al Bl A iy d

mn:dz m\/i \/5

MONTHLY WEATHER REVIEW VoLUE 112 ; y

This eigenvalues are not
monotonically increasing
functions!

(#861) onruef woi]

Fu. 5. Bigenwaluex of the finite differesce Liplacisn 7,7, The values ans

mandimessionalized by multiplication by o7
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The consequence is that Charney mechanical
analogy does not work any more - though
formally both energy and vorticity of rotational

flow are conserved!

From Janjic (1984)

o e
— 3 ;l-"'-:l »
| EE )

I K Hz
x .
[Fﬁ1 . HFE

Elm 2
Mg

Fro &, Schemsatie representation of the liitanons impossd on
ine pomlicear encrgy Gascade Ty the energy amed costrophy Gonser-
vatloe on the B grid.

The short and long
waves may directly
exchange energy
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1 Janjic (1984) asked the question:

Can we on the E-grid, using E-grid
material, somehow conserve the other, x-
Jacobian of the stream function - that is,

the vorticity as defined on the Arakawa C-
grid ??7?7?)

Spring 2005 ICTP



Eta Model Lectures

Miodrag Rancic

[0 C-grid Jacobian

From Janjic (1984)

Fic. 3. Eipeovalocs of the feile Sffewnes Lsplsoks 7.7
The waledl af nondimessonliad Ery maiidplh conieee by @

i ) 2

= i(sin2 e 2 i ' ij
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[0 It turned out that this is really possible, and by
using properties of Arakawa Jacobian, Janjic
was able to construct a new scheme that
conserves C-grid vorticity/enstrophy and E-grid
energy

[0 This scheme was ever since an integral part of
the Eta model dynamics

[0 Eigenvalues of the new scheme are defined as

2
l-cosk, —cosl —_—

d2.2 d .2d

sin“k —=+sin"/ ——
00 "2
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Not only that monotonicity is preserved, but
they actually tends to infinity for the shortest
resolvable wave - allowing virtually zero
energy to be associated with it

ZAVISA 1 IANFfom Janjic (1984) This is a unique feature
of the Eta model —
| . which makes it ideal for

S

/ long term ‘climate type’

1 simulations
rall f
X [ %.

Fia, 9, The snadogs of the cipenvalues of a fisdls rl'mm: scheme which
.sa-m]:-grd energy and Cogrid ynsirophy. The values are nondim mubtiplication
trvn'
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The scheme for the shallow water case

3 ST XA 3 T, y =100 X' TS y'
au——L l(U ou +V 5uj+%(U'5.u +V' O u ﬂ
3 : 4 3 % Y

o el

! o 2 - B .
@=—_i l Uyﬁxv LV Sy +% U'yﬁx.v +VUS
ot hy _3 y 3 y

%: —B(5xU+5yV)+§(5x.U'+ @.V')}
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[1 x and y are normal directions on E-grid
[0 x"and y’ are diagonal directions on E-grid

[0 Normal and diagonal fluxes are respectively
defined as
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Flat Square Earth Experiment
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[0 A forth-order version of this scheme has been

developed (Rancic, 198

[0 A new version of the sc
application in the globa
on quasi-uniform grids

8)

heme customized for
version of Eta model
nas been recently

developed (Rancic 2005)
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