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Key Issues of Atmospheric Dynamics

1) Process of geostrophic adjustment
2) Slowly changing quasi-geostrophic component 

of atmospheric flow
This lecture will address the treatment of these 
two dynamical process in the Eta model
More precisely, the lecture will explain how Eta 
model approximate the terms in the governing 
equations that are responsible for these two 
processes, that is:

Gravity-inertial (adjustment) terms
Nonlinear momentum advection terms

Just in 
extratropical
atmosphre !
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How does extratropial atmosphere work?

There is a slowly varying (a quasi-geostrophic) 
balance between mass and wind fields

Any forcing (such as, latent heat release during 
precipitation, orographic lifting, etc.) pushes 
the atmosphere out of balance
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Atmosphere reacts by exciting the gravity-
inertial waves, until a new balance, slightly 
different than previous, is established

In addition, the quasi-geostrophic flow is slowly 
changing by itself – for which the nonlinear 
advection is largely responsible 
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The process of slipping off the balance and 
geostrophic readjustment is in the atmosphere 
happening simultaneously 
Similarly, the geostrophic adjustment and 
quasi-geostophic motion are also happening 
simultaneously
It is just convenient for theoretical deliberations 
to separate them and consider them separately
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System of shallow water equations
Shallow water model is a simple model that contains 
many important solutions as the full 3D atmosphere, and 
is therefore often used for theoretical studies

u u u hu v g fv
t x y x

v v v hu v g fu
t x y y

h h h u vu v h
t x y x y
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Geostrophic Adjustment Terms
Linearized system Basic state is assumed to be 

that of zero motions and 
with a constant height h=H
We will further assume that 
Coriolis parameter f=const
Let us look for solutions of 
this system in the form of

u hg fv
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v hg fu
t y

h u vH
t x y
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By replacing these solutions in the system, it 
becomes:

… which could be rewritten using matrix 
notation as

ˆˆ ˆ
ˆˆ ˆ

ˆ ˆ ˆ( )

i u gikh fv

i v gilh fu

i h H iku ilv

ν

ν

ν

− = − +

− = − −

− = − +

ˆ ˆ0
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By a closer inspection, we see that this is a 
classical formulation of an eigenvalue problem

… with matrix A, vector x and eigenvalue λ
defined respectively as

We can rewrite the eigenvalue equation above 
as 

λ=Ax x

0
0

0

f ik
f il
Hik Hil

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦
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ˆ
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v

h
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⎢ ⎥
⎣ ⎦

x ( )iλ ν= −
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Identity 
matrix
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This matrix equation may be rewritten as 

…or in the explicit form

For a nontrivial solution is required that the matrix is 
singular, that is, that its determinant is equal to zero:

( ) 0λ− =A I x

ˆ
ˆ 0
ˆ

i f gik u
f i gil v
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We get two solutions

For g=0 we get pure inertial oscilation
For f=0 we get pure gravity waves

How does the Eta model approximate these 
terms?

2 2 2 2( ) 0f gH k lν ν⎡ ⎤− + + + =⎣ ⎦

2 2 2

0    

( )     f gH k l

ν

ν

=

= ± + +

Geostrophic mode

Gravity-inertial waves
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E-grid (Eta)
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C-grid
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What is the consequence of averaging on 
the C-grid ?

Assuming that distance between two points 
carrying the same variable is d

Note that for the shortest resolvable wave 
k=2π/2d=π/d X=π/2
l=2π/2d=π/d Y=π/2

( )( / 2 / 2) ( / 2 / 2) ( / 2 / 2) ( / 2 / 2)ˆ

ˆ ˆcos( / 2)cos( / 2) cos cos

xy i kd ld i kd ld i kd ld i kd ldA A e e e e

A kd ld A X Y

+ − − + − −= + + +

= ≡
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Thus, for the pure inertial wave on the C-grid, 
we get the following solution for numerical 
frequency

* cos cosX Y
f

ν⎛ ⎞
=⎜ ⎟

⎝ ⎠
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Gravity waves on the C-grid
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Rossby Radius of Deformation
A spatial scale that describes properties of 
geostrophic adjustment

In the general case, numerical frequency will 
depend on (λ/d)
Because frequency of inertial waves tends to 
be erroneously presented for the short waves, 
it can be shown that in general case C-grid has 
difficulties to describe geostrophic adjustment 
for the small static stability when (λ/d) is small

gH
f

λ =
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E-grid
There is no averaging of 
Coriolis term, and 
numerical frequency of 
inertial waves is exact 
The problem represents 
simulation of gravity 
waves!
The diagonal rows ‘does 
not feel’ perturbation –
which creates a two-grid-
interval noise
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represents here a distance between two 
successive points in x or y direction

*d

hV *d

Note that the shortest wave that 
grid may register is here with the 
wavelength in normal direction of

*2L d=

d

Corresponding wavenumber is

* *

2 2
2

k
L d d
π π π

= = =

h

h VV

h VV
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Thus, for 1D case (l=0), the frequency of the 
shortest wave is equal to zero

… which describes stationary two-grid-interval 
noise
This is a potentially serious drawback in high-
resolution simulations at the scales that effect 
of Coriolis force may be neglected
… as well as in simulations in tropical region 

2 2
2 * *

* 2
*

sin sinkd ldgH
d

ν +
=

2 2
* *

*
2
*

sin sin 0
0

d d
dgH

d

π
+

= =
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A more formal description of this phenomena 
may be observed by replacing wave solution in 
equations for propagation of gravity waves

…we get the following frequency relation for 
the gravity waves

( ),    ,    x y x y
u v hg h g h H u v
t t t

δ δ δ δ∂ ∂ ∂
= − = − = − +

∂ ∂ ∂

2 2
2 * *

* 2
*

sin sinkd ldgH
d
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=
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This two-grid-interval problem may be  better 
understood by a closer inspection of E-grid 
structure

h      u     h     u     h     u    

v            v            v            

h      u     h     u     h     u    

v            v            v           

h      u     h     u     h     u    

v            v            v            

v             v            v

u     h     u     h     u    h

v             v            v

u     h     u     h     u    h

v             v            v

u     h     u     h     u    h



ICTPSpring 2005

Eta Model Lectures Miodrag Rancic

Thus, we see that E-grid is made of 2 
elementary C-grids
Two-grid-interval noise is essentially a 
consequence of separation of solutions on the 
elementary C-grids

What to do ?!
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The nature of the problem may also be 
observed by considering the implied wave 
equation

( )
2

2
2 xx yy
h gH h h gH h
t

δ δ +

∂
= + = ∇

∂

h

h

V

h

h

h

h

V

h

hV

V V

VV

V VV

hV V

Can we somehow implement Jacobian
made of the closest points?

( )
2

2
' ' ' '2 x x y y

h gH h h gH h
t

δ δ ×

∂
= + = ∇

∂
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Solution
Mesinger (1973, 1974) introduced a solution
In the context of an economical forward-
backward time-differencing scheme

Here, w is a weight factor which is bounded by 
0.25 in order to provide numerical stability

( )

1

1

11

( )

( )

( )

x

y

x y

u u g t h

v v g t h

h h H t u v

τ τ τ

τ τ τ

ττ τ

δ

δ

δ δ

+

+

++

= − ∆

= − ∆

= − ∆ + ( )2 2 2( )wgH t hτ
× ++ ∆ ∇ − ∇
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This technique, known as a modification of the 
continuity equation, has been expanded to 
various time-differencing schemes (Janjic
1974, 1979)
One clear advantage, in comparison to, for 
example, inclusion of diffusion in the 
momentum equation, is that it does not affect 
geostrophic part of the flow, but just gravity-
inertial terms
It has been generalized to A-grid
There are alternative methods nowadays 
(Janjic 2000, Rancic 2005) that require 
application of elliptic solvers or solution of 
tridiagonal systems
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Without modification (August 1975)
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With modification (August 1975)
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Nonlinear Advection Scheme

Eta model is a model based on application of 
Arakawa conserving principles 
One of the key features of the model is 
application of Arakawa type momentum 
advection scheme formulated on the E-grid
Janjic (1977) formulated an Arakawa type 
advection scheme in a vector invariant form 
that conserves both enstrophy (      ) and 
kinetic energy of rotational flow
defined using E-grid wind components

21
2 ζ

( )2 21
2 u v+
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Janjic (1977) scheme

For a pure nondivergent flow is defined as

Here, vorticity is defined using E-grid wind 
components

2 1
3 3

2 1
3 3

xxy y

yxy x

u v v
t
v u u
t

ζ ζ

ζ ζ

∂
= +

∂
∂

= − −
∂

%

%

x yv uζ δ δ= −
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Brief review of Arakawa Jacobian
By expanding vorticity written in terms of stream 
function in a closed domain using Fourier series, we get

… where λp are eigenvalues of this Laplacian
By applying the same development for the mean kinetic 
energy and mean enstrophy, we get

2 2
p p pζ ψ λ ψ= ∇ =

( )2 2 2 21 1
2 2

2 4 2 21 1
2 2

p p p
p p

p p p p
p p

K u v K

K

λ ψ

ζ λ ψ λ

= + = =

= =

∑ ∑

∑ ∑ 2Kλ≡
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Famous Charney (1966) mechanical analogy

In other words, the nature of two-dimensional 
turbulence is such that energy cannot arbitrary 
cascade between different scales – but only in 
such a way as to preserve initial energy 
balance
Shorter the waves, smaller amount of energy

From Mesinger (1976)
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E-grid implies definition of stream function and 
velocity potential at the position of h scalar 
points

h ψ χ

h ψ χ h ψ χ

h ψ χh ψ χ h ψ χ
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= ∇
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Eigenvalues of this discrete + Laplacian are 
given by

2 2 2
2

2 sin sin
2 2mn m n
d dk l

d
λ ⎛ ⎞= +⎜ ⎟

⎝ ⎠

This eigenvalues are not 
monotonically increasing 
functions!From

 Janiuc
(1984)
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The consequence is that Charney mechanical 
analogy does not work any more – though 
formally both energy and vorticity of rotational 
flow are conserved!

From Janjic (1984)

The short and long 
waves may directly 
exchange energy
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Janjic (1984) asked the question: 

Can we on the E-grid, using E-grid 
material, somehow conserve the other, x-
Jacobian of the stream function - that is, 
the vorticity as defined on the Arakawa C-
grid ????)



ICTPSpring 2005

Eta Model Lectures Miodrag Rancic

C-grid Jacobian

h ψ χ

h ψ χ h ψ χ

h ψ χh ψ χ h ψ χ

h ψ χh ψ χ h ψ χ

h ψ χ

h ψ χ h ψ χ
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2 2 2
2
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d dk l

d
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⎝ ⎠

From Janjic (1984)
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It turned out that this is really possible, and by 
using properties of Arakawa Jacobian, Janjic
was able to construct a new scheme that 
conserves C-grid vorticity/enstrophy and E-grid 
energy
This scheme was ever since an integral part of 
the  Eta model dynamics
Eigenvalues of the new scheme are defined as

2

2
2

2 2

1 cos cos
8 2 2

sin sin
2 2

m n

mn

m n

d dk l

d dd k l

⎛ ⎞−⎜ ⎟
⎝ ⎠Λ =

+
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Not only that monotonicity is preserved, but 
they actually tends to infinity for the shortest 
resolvable wave – allowing virtually zero 
energy to be associated with it

This is a unique feature 
of the Eta model –
which makes it ideal for  
long term ‘climate type’
simulations

From Janjic (1984)
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The scheme for the shallow water case
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x and y are normal directions on E-grid
x’ and y’ are diagonal directions on E-grid
Normal and diagonal fluxes are respectively 
defined as

( )

( )

''

''

2'
2
2'

2

x

y

yx

xy

U h u

V h v

U h u v

V h u v

=

=
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Flat Square Earth Experiment 

From Janjic (1984)

Old Scheme New Scheme
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A forth-order version of this scheme has been 
developed (Rancic, 1988) 
A new version of the scheme customized for 
application in the global version of Eta model 
on quasi-uniform grids has been recently 
developed (Rancic 2005) 


