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THE NEED: REGIONALISATION OF SCENARIOS

• “Brute force” approach: 
• T1000 ensemble with 100 members (half done?)
• one LAM integration for each ensemble member

•ARPA-SMR approach:
• ensemble size reduction
• concept of “most significant member”
• only a few LAM high- resolution runs needed



The LAM is nested in only a limited number of 
members selected from the global EPS, the 
Representative Members

Some of the information from global EPS is lost 
BUT the operation becomes feasible on an 
operational basis

THE LEPS APPROACHTHE LEPS APPROACH



Most Representative Member

• one per cluster
• choice is based on selected 3D fields: has  to 
be:   the closest to the mean of its own cluster 
AND the most distant to the other clusters’
means
• 5 (or 10) runs instead of 51, 102 or 153!!
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www.cosmo-model.org

A COSMO aderiscono

Germania, Svizzera, Italia, Grecia e Polonia

COSMO è finalizzato allo sviluppo e alla gestione operativa 
del modello non idrostatico

LAMI (Limited Area Model of Italy)
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COSMO-LEPS (developed at ARPA-SIM)

• What is it?
It is a Limited-area Ensemble Prediction System (LEPS), based

on Lokal Modell and developed within COSMO (COnsortium
for Small-scale MOdelling, which includes Germany, Greece, 
Italy, Poland and Switzerland).

• Why?
Because the horizontal resolution of global-model ensemble 

systems is limited by computer time constraints and does
not allow a detailed description of mesoscale and orographic-
related processes.

The forecast of heavy precipitation events is still inaccurate
(in terms of both locations and intensity) after the short 
range.



COSMO-LEPS project 

combine the advantages of global-model ensembles with the 
high-resolution details gained by the LAMs, so as to identify
the possible occurrence of intense and localised weather
events (heavy rainfall, strong winds, temperature anomalies, 
snowfall, …);

generation of COSMO-LEPS in order to improve  the 
Late-Short (48hr) to  Early-Medium (120hr) range 

forecast of the so-called “severe weather events”.
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The COSMOThe COSMO--LEPS suite @ ECMWFLEPS suite @ ECMWF
November 2002 November 2002 –– May 2004May 2004
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The COSMOThe COSMO--LEPS suite @ ECMWFLEPS suite @ ECMWF
since June 2004since June 2004
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• suite running every day at 
ECMWF managed by ARPA-
SIM;

• ∆x ~ 10 km; 32 ML;
• fc length: 120h;
• Computer time provided by the 

COSMO partners which are 
ECMWF member states.



Operational COSMO-LEPS set-up

Core products
10 perturbed LM runs (ICs and 6-hourly BCs from 10 
EPS members) to generate probabilistic output (start at 
12UTC; ∆t = 120h);

Additional products
1 reference run (ICs and 6-hourly BCs from the high-
resolution deterministic ECMWF forecast) to assess the 
relative merits between deterministic and probabilistic 
approach (start at 12UTC; ∆t = 120h);
1 proxy run (ICs and 3-hourly BCs from ECMWF analyses) 
to “downscale” ECMWF information (start at 00UTC; ∆t = 
36h).



Dissemination to the COSMO 
community 



Operational COSMO-LEPS  ~ Operational EPS 

“Friuli case”S.E. 153
5 RMs

The youngest
EPS 



>20mm/24h >50mm/24h

Operational COSMO-LEPS ~ Operational EPS : Friuli case
probability maps – fc. Range: +96h

COSMO
LEPS

EPS 
51 

members



COSMO-LEPS ongoing activities

EVALUATION OF THE METHODOLOGY  
with respect to:

• ENSEMBLE SIZE REDUCTION 
• SUPER-ENSEMBLE SIZE 
• CLUSTERING SETTING (parameters, time range, areas)
• impact of weighting
• ADDED VALUE WITH RESPECT TO EPS

OBJECTIVE VERIFICATION OF COSMO-LEPS
• ADDED VALUE WITH RESPECT TO EPS
• evaluated at different spatial scales
• evaluated over different geographical regions
• evaluated for two different convection schemes

2 related ECMWF Special Projects ongoing:
• SPITLAEF in cooperation with UGM
• SPCOLEPS in cooperation with Meteo-Swiss
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ENSEMBLE SIZE REDUCTION: 
Friuli case study set-up



ENSEMBLE SIZE REDUCTION
IMPACT EVALUATED ON CASE STUDIES (1)



2003082512 Friuli 
(fc+72-96h)

TP24h > 20 mm

5 RM
s 

10 RM
s 

All 51  

TP24h > 100 mm



ENSEMBLE SIZE REDUCTION
IMPACT EVALUATED ON CASE STUDIES (2)

Observed precipitation between 15-11-2002 12UTC and 16-11-2002 12 UTC

Piedmont case



2002111212 Piedmont
(fc+72-96)

20 mm 150 mm

5 RM
s 

10 RM
s 

All 51  



EVALUATION OF 
SUPER-ENSEMBLE (S.E.) SIZE & ENSEMBLE SIZE REDUCTION
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old suite new suite

BSS outliers

EVALUATION OF S.E. SIZE (either 51, or 102, or 153) & ENSEMBLE 
SIZE REDUCTION (either 5 or 10 RMs)

Regarding the 5-member ensembles, results seem to 
suggest that the use of just two EPSs in the super-
ensemble can be a reasonable compromise, permitting to 
decrease the percentage of outliers significantly (with 
respect to the use of 1 EPS), “paying” only a small 
decrease of the skill.

Regarding the impact of the ensemble size, the difference 
between each 5-member ensemble and the correspondent 
10-member ensemble is remarkable. The impact of 
doubling the ensemble size is almost the same for every 
configuration and is larger than the impact of changing 
the number of EPSs on which the Cluster Analysis is 
performed (either 2 or 3).



TEST OF DIFFERENT CLUSTERING INTERVALS

Consider a fixed configuration in terms of ensemble size (10 RMs selected out of 2 EPS sets, 2eps-10rm) and the 
properties of the “reduced” (10-member) global ensemble in 4 different cases:

OPE: the 10 members are selected like in the operational set-up (clustering variables: z,u,v,q; 
clustering levels: 500, 700, 850 hPa; clustering times: fc+96h, fc+120h);

D2: like OPE, but clustering times: fc+24h, fc+48h;
D3: like OPE, but clustering times: fc+48h, fc+72h;
D4: like OPE, but clustering times: fc+72h, fc+96h.

BSS

Brier Skill Score: OPE has slightly better scores at all verification ranges (less evident for ROC area .. not shown);
Outliers percentage: results heavily depend on the verification range.

outliers



A verification package was developed keeping into account 
two measures of precipitation:
the cumulative volume of water deployed over a specific 
region,
the rainfall peaks which occur within that region.

The verification package includes the traditional 
probabilistic scores:
•Brier Skill Score (Wilks, 1995)
•ROC area (Mason and Graham, 1999)
•Cost-loss Curve (Richardson, 2000)
•Percentage of Outliers (Buizza, 1997)

OBJECTIVE VERIFICATION OF COSMO-LEPS

COSMO observations



Precipitation: average over 1.5 x 1.5 boxes

tp > 10mm/24h tp > 20mm/24h

COSMO-LEPS

5-MEMBER EPS

51-MEMBER EPS
SON 2003 

ROC area

As regards AVERAGE precipitation above these
two threshols, EPS wins.
Worsening due to the ensemble-size reduction.
Positive impact of LM downscaling.



maxima over 1.5 x 1.5 boxes

tp > 20mm/24h
COSMO-LEPS

5-MEMBER EPS

51-MEMBER EPS

tp > 50mm/24h

SON 2003 

ROC area

COSMO-LEPS is more skilful than EPS in 
forecasting correctly high precipitation 
values over a rather large area.

Number of occurrences: 600 (20 mm 
threshold) and 150 (50 mm).



COSMO-LEPS vs ECMWF 5 RM
ROC average on 1.5 x 1.5 boxes

tp > 20mm/24hfc. range +66 fc. range +90

COSMO-LEPS

5-MEMBER EPS

COSMO-LEPS

5-MEMBER EPS



COSMO-LEPS vs ECMWF 5 RM
ROC maxima on 1.5 x 1.5 boxes

tp > 20mm/24hfc. range +66 fc. range +90

COSMO-LEPS

5-MEMBER EPS

COSMO-LEPS

5-MEMBER EPS



COSMO-LEPS vs ECMWF 5 RM
detscores average on 1.5 x 1.5 boxes

false alarm rate

dcno
bayes

noyes
observed

forecast

ba
bFAR
+

=



COSMO-LEPS vs ECMWF 5 RM
COST-LOSS average on 1.5 x 1.5 boxes

envelope

fc. range +66tp > 10mm/24h tp > 20mm/24h
envelope

COSMO-LEPS

5-MEMBER EPS

COSMO-LEPS

5-MEMBER EPS



COSMO-LEPS vs ECMWF 5 RM
COST-LOSS average on 1.5 x 1.5 boxes

COSMO-LEPS

5-MEMBER EPS

envelope fc. range +90 

tp > 20mm/24h



italian observations



COSMO-LEPS  - parallel suite
ROC average on 0.5 x 0.5 boxes

tp > 20mm/24h

fc. range +90

Tiedtke

Kain-Fritsch

both (10-m)



COSMO-LEPS  - parallel suite
ROC maxima on 0.5 x 0.5 boxes

tp > 50mm/24h

fc. range +90

Tiedtke

Kain-Fritsch

both (10-m)



Main results

• Positive impact of COSMO-LEPS with respect to EPS in forecasting
precipitation maxima;

• good performance of the ensemble size reduction technique (on case 
studies);

• the use of 2 EPSs and 10 RMs seems to be the “best” configuration;

and (not shown):
• no positive impact of the weighting procedure as regards high 

resolution precipitation;
• no relevant impact on using either Tiedke or KF convection scheme;
• differences in the scores computed in different areas (results still

too preliminary but supporting the idea that Limited Area Ensemble 
System set-up should be designed taking into account the features of 
each area).



• COSMO-LEPS suite as “time-critical” application at ECMWF: 
stronger involvement of ECMWF in the operational management of the 
system (+ MARS archiving of COSMO-LEPS products).

• Participation to EURORISK-PREVIEW project: 
– integration domain will be enlarged to include Northern Europe;
– clustering on different areas will be tested to focus better on different 

scenarios (Central-North & Central-Mediterranean).
• Partecipation to MAP D-PHASE project:

– further downscaling (around 2 km hor.res.) on specific areas where severe 
events are likely to occur (→ methodology to be evaluated also for TIGGE); 

– introduction of model perturbations to reveal uncertainty on smaller scales.
• Carry on tests on clustering (impact of different time ranges and 

different variables).
• Verification will be further developed → new variables verified.

Future plans



Thank you for your attention



Verification of ensemble systems

Chiara Marsigli

ARPA-SIM



Deterministic forecasts

Event E (dichotomous event)

e.g.: the precipitation cumulated over 24 hours at a given location 
(raingauge, radar pixel, hydrological basin, area) exceeds 20 mm

yes
o(E) = 1

no
o(E) = 0

the event is observed with frequency
o(E)

the event is forecast with probability
p(E)

yes
p(E) = 1

no
p(E) = 0



Probabilistic forecasts

Event E (dichotomous event)

e.g.: the precipitation cumulated over 24 hours at a given location 
(raingauge, radar pixel, hydrological basin, area) exceeds 20 mm

yes
o(E) = 1

no
o(E) = 0

the event is observed with frequency
o(E)

the event is forecast with probability
p(E)

p(E)     [0,1]∈



Ensemble forecasts

Event E (dichotomous event)

e.g.: the precipitation cumulated over 24 hours at a given location 
(raingauge, radar pixel, hydrological basin, area) exceeds 20 mm

yes
o(E) = 1

no
o(E) = 0

the event is observed with frequency 
o(E)

M member ensemble
the event is forecast with probability p(E) = k/M

no member

p(E) = 0

all members

p(E) = 1



Quality of the forecast

Distribution-oriented approach: the joint distribution of forecasts and 
observations p(f,x) contains all the non-time-dependent information relevant to 
evaluating forecast quality (Murphy and Winkler, 1987).
This information becomes more accessible when p(f,x) is factored into 
conditional and marginal distributions:

conditional distribution of the observations given the forecasts p(x|f)
conditional distribution of the forecasts given the observations p(f|x)
marginal distribution of the forecasts p(f)
marginal distribution of the observations p(x)

Degree of correspondence between forecasts and observations

Murphy (1993)



Quality of probabilistic forecasts

The accuracy of a probability forecast system is 
determined by: 

reliability
resolution

which can be assessed by examining the conditional 
distribution p(x|f) and the marginal distribution p(f)



Reliability

capability to provide unbiased estimates of the observed 
frequencies associated with different forecast probability values

p(x), compiled over the cases when the forecast probability 
density is p(f), equals p(f)

answers: is the relative frequency of precipitation on those 
occasions on which the precipitation probability forecast is 0.3
equal to this probability?

Not sufficient: a system always forecasting the climatological
probability of the event is reliable but not useful

And: it can always be improved by calibration, re-labeling the 
forecast probability values



Resolution

ability of a forecast system to a priori separate cases when 
the the event under consideration occurs more or less frequently
than the climatological frequency

measures the difference between the conditional distribution 
of the observations and the unconditional distribution of the 
observations (climatology)

Resolution cannot be improved by simply post-processing 
forecast probability values



Reliability and Resolution

a useful forecast system must be able to a priori separate 
cases into groups with as different possible outcome as possible, 
so each forecast group is associated with a distinct distribution 
of verifying observations (res)

then it is necessary to label properly the different groups of 
cases identified by the forecast system (rel). This can be done 
by “renaming” the groups according to the frequency 
distributions associated with each forecast group, based on a 
long series of past forecasts (calibration)

is the series sufficient?

Toth et al. (2003)



Sharpness and Uncertainty

Sharpness

expressed by the marginal distribution of the forecasts p(f)
capability of the system to forecast extreme values (near 0 

or 1); variability of the forecast probability distribution around 
the climatological pdf

Uncertainty

expressed by the marginal distribution of the observations 
p(x)

a situation in which the events are apporximately equally 
likely is indicative of high uncertainy



Scalar summary measure for the assessment of the probabilistic forecast 
performance, mean-squared error of the probability forecast

• N      =  number of points in the “domain” (spatio-temporal)

• oii =  1 if the event occurs
=  0 if the event does not occur

• fi is the probability of occurrence according to the forecast system (e.g. 
the fraction of ensemble members forecasting the event)

( )∑
=

−=
N

i
ii of

N
BS

1

21

Brier Score

Brier (1950)

BS takes on values in the range [0,1], a perfect (deterministic) forecast having 
BS = 0

Sensitive to climatological frequency of the event: the more rare an event, the 
easier it is to get a good BS without having any real skill



Brier Score decomposition

∑ ∑
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reliability resolution uncertainty

The first term is a reliability measure: for forecasts that are perfectly reliable, 
the sub-sample relative frequency is exactly equal to the forecast probability in 
each sub-sample. 
The second term is a resolution measure: if the forecasts sort the 
observations into sub-samples having substantially different relative frequencies 
than the overall sample climatology, the resolution term will be large. This is a 
desirable situation, since the resolution term is subtracted. It is large if there is 
resolution enough to produce very high and very low probability forecasts.
The uncertainty term ranges from 0 to 0.25. If E was either so common, or 
so rare, that it either always occurred or never occurred, then bunc=0. When 
the climatological probability is near 0.5, there is more uncertainty inherent in 
the forecasting situation (bunc=0.25).
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on the Brier Score

Talagrand et al. (1999)

increasing N will result  in a decrease of the Brier Score, i.e. in a increase of 
the quality of the system, which results from a smoothing of the noise due to the 
finiteness of the ensembles

the numerical impact of increasing N will be larger if the predicted probabilities 
have small dispersion (small sharpness)

Sources of uncertainty in the evaluation of the accuracy of a probabilistic 
prediction system:

errors in the verifying observations

finitness of the sample

finitness of the ensembles from which predicted probabilities are estimated 
(N members)



)ln(2
2 NNM

ε
≥

on the Brier Score

the system of N members produces probabilities p, p’(p) is the frequency of 
occurrence of E when p is predicted.

M (realisations on which the statistics is computed) must be large enough so 
that a significant estimate of p’(p) is obtained for each p; if ε is the precision of 
the reliability diagnosis the condition is:

Candille and Talagrand (2004)

1.5 106103447446901408755491963M >=
10001005020105N =

e.g.  ε=10%

increasing N without increasing M improves the resolution but degrades the 
reliability.



The forecast system has predictive skill if BSS is positive (better than 
climatology), a perfect system having BSS = 1.

cliBS
BSBSS −= 1 ( )ooBS cli −= 1

= total frequency of the event 
(sample climatology)
o

Brier Skill Score

Measures the improvement of the probabilistic forecast relative to a 
reference forecast (e. g. sample climatology)



Reliability Diagram

o(p) is plotted against p for some finite binning of width dp

In a perfectly reliable system o(p)=p and the graph is a straight line oriented 
at 45o to the axes

If the curve lies below the 45° line, the probabilities are overestimated
If the curve lies above the 45° line, the probabilities are underestimated



Reliability Diagram

the reliability diagram is conditioned on the forecasts, p(x|f), then it is a good 
partner to the ROC, which is conditioned on the observations, p(f|x). 

the histogram is the unconditional distribution of the forecasts p(f) => compact 
display of the full distribution of forecasts and observations

Sharpness histogram:

the frequency of forecasts in 
each probability bin 
(histogram) shows the 
sharpness of the forecast. 



Reliability (attributes) Diagram

The reliability term measures the mean square distance of the graph of o(p) 
to the diagonal line. 

The resolution term measures the mean square distance of the graph of 
o(p) to the sample climate horizontal dotted line.

Points between the "no skill" 
line and the diagonal contribute 
positively to the Brier skill score
(resolution > reliability).

yuncertaint
yreliabilitresolutionBSS −

=



Reliability Diagram Wilks (1995)

climatological
forecast

minimal 
resolution

underforecasting
bias

Good resolution at the 
expense of reliability

reliable  of
rare event

small 
sample size

+ small 
ensemble



Extension of the Brier Score to the multi-event situation, taking into account the 
ordered nature of the variable  (e.g.: TP <1mm, 1mm-20mm, >20mm)

• J      =  number of forecast categories

• oij =  1 if the event occurs in category j
=  0 if the event does not occur in category j

• fj is the probability of occurrence in category j 

sensitive to the distance: the squared errors are computed with respect to the 
cumulative probabilities in the forecast and observation vectors (penalise “near 
misses” less than larger errors, rewards small spread)

RPS take on values in the range [0,1], a perfect forecast having RPS = 0
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Ranked Probability  Score

Epstein (1969), Murphy (1971) + continuous (Hersbach, 2000)

N = 1



Rank histogram (Talagrand Diagram)

Frequency of occurrence of the observation in each bin 
of the rank histogram of the distribution of the values 

forecast by an ensemble

range of forecast value

V1 V2 V3 V4 V5

Outliers below
the minimum

Outliers above
the maximum

I II III IV

Talagrand et al.  (1999)

If the ensemble members and the verifying 
observation are independent realisations of the same 
probability distribution, each interval is equally likely 
to contain the verifying observed value (measure of 
reliability)

Total outliers



Rank histogram (Talagrand Diagram)

Asymmetrical: bias in the mean

U-shape: negative 
bias in the variance

dome-shape: positive 
bias in the variance



Spread-skill relationship

Is it possible to obtain from a probabilistic prediction 
system an estimate, even if qualitative,  of the 

confidence to be given to the forecast?

If the spread of the predicted pdf is small (large), the 
correspondent uncertainty of the forecast si small (large)

http://ams.confex.com/ams/annual2002/techprogram/paper_26835.htm

Toth et al., 2001
+ Ziehmann, 2001



It can be used the Signal Detection Theory, which permits to 
evaluate the ability of the forecast system to discriminate 
between occurrence and non-occurrence of an event (to detect 
the event) on the basis of information which is not enough for 
certainty. A powerful analysis tool is the Relative Operating 
Characteristic (ROC).

Relative Operating Characteristics (ROC)

For a given probability threshold pt, probability forecast can 
be converted into deterministic forecast:

tpp̂ ≥if => 1X̂ =
0X̂ =otherwise

the event is forecast

the event is not forecast



contingency table Observed

Yes No

Forecast Yes a b

No c d

A contingency table can  be built for each probability class (a probability class 
can be defined as the % of ensemble elements which actually forecast a given 
event)

eventtheofsoccurrenceofnumber total
event  theof forecastscorrect  ofnumber 

=
+

=
ca
aH

eventtheofsoccurrence-nonofnumber total
event  theof forecastscorrect  non ofnumber 

=
+

=
db
bF

Hit Rate

False Alarm Rate

ROC Curves

(Mason and Graham 1999)

N.B. F is defined as and notdb
bF
+

=
ba
bF
+

=
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x
x For the k-th probability class:

Hit rates are plotted against the corresponding false alarm rates to generate the
ROC Curve
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ROC Curve

k-th probability class: E is forecast if it 
is forecast by at least k ensemble 
members

=> a warning can be issued when the 
forecast probability for the predefined 
event exceeds some threshold

“At least 0 members” (always)

“At least M+1 members” (never)



ROC Curve

The ability of the system to prevent dangerous situations depends on the 
decision criterion: if we choose to alert when at least one member forecasts 
precipitation exceeding a certain threshold, the Hit Rate will be large enough, but 
also the False Alarm Rate. If we choose to alert when this is done by at least a 
high number of members, our FAR will decrease, but also our HR 

x
x x
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x
x

x

x

x
x



ROC Curve

ROC curve measures the ability of the forecast to discriminate between 
two alternative outcomes, thus measuring resolution. It is not sensitive to 
bias in the forecast, so is independent of reliability. 

Advantage: is directly related to a decision-theoretic approach and can be 
easily related to the economic value of probability forecasts for forecast 
users.

x
x x
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x
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x
x

The area under the ROC curve is used as 
a statistic measure of forecast usefulness. 
A value of 0.5 indicates that the forecast 
system has no skill. In fact, for a system 
that has no skill, the warnings (W) and 
the events (E) are independent 
occurrences:

( ) FEWpWpEWpH ==== )()(



The event E causes a damage which incur a loss L. The user U can avoid 
the damage by taking a preventive action which cost is C.

U wants to minimize the mean total expense over a great number of cases.

U can rely on a forecast system to know in advance if the event is going to 
occur or not. 

Decisional
model

E happens

yes no

U take 
action

yes C C

no L 0

Cost-loss Analysis

Is it possible to individuate a threshold for the skill, which can be 
considered a “usefulness threshold” for the forecast system?
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Cost-loss Analysis

With a deterministic forecast system, the mean expense for unit loss is:
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If the forecast system is probabilistic, the user has to fix a probability 
threshold k. 

When this threshold is exceeded, it take protective action.

contingency table Observed

Yes No

Forecast Yes a b

No c d

is the sample climatology (the observed frequency)cao +=

Richardson (2000)



Vk =
MEpMEcli
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Value

Cost-loss Analysis

L
CoMEp =

),min(
L
CoMEcli =

the action is always taken if  

it is never taken otherwise

o
L
C
<

ME based on climatological information 

ME with a perfect forecast system 
the preventive action is taken 
only when the event occurs

Gain obtained using the system instead of the 
climatological information, percentage with 
respect to the gain obtained using a perfect 
system



Cost-loss Analysis

Curves of Vk as a function of C/L, a curve for each probability threshold. The 
area under the envelope of the curves is the cost-loss area (optimum 
maximum value).
The appropriate probability threshold pt is equal to C/L (reliable fcs).



Cost-loss Analysis

The maximum value is shifted towards lower cost-loss ratios for the rarer 
higher precipitation events. Users with small C/L ratios benefit more from 
forecasts of rare events.

COSMO-LEPS

5-MEMBER EPS

COSMO-LEPS

5-MEMBER EPS

Average precipitation fc. range +66h

tp > 10mm/24h tp > 20mm/24h



Object oriented verification

verification of the properties of spatial forecast of entities (e.g. 
contiguous rain areas – CRAs)

for each entity that can be identified in the forecast and in the 
observations, a pattern matching technique is used to determine 
the location error and errors in area, mean and maximum 
intensity, spatial pattern

the verified entities can be classified as “hits”, “misses”, etc.

Ebert and McBride (2000) 



Statistical significance - bootstrap

comparison between two systems: does one ensemble perform 
significantly better than another? Is BSSM1 significantly different 

from BSSM2?

re-sampled test statistics consistent with the null hypothesis 
are generated after randomly choosing (e.g. 1000 times) either 
one or the other ensemble for each point and on each case day. 
Then, 1000 BSS* have been computed over all points and over all 
days and the difference between each couple of BSS* has been 
calculated (BSS*1-BSS*2)

compare the test statistic with the null distribution: determine 
the location of BSSM1-BSSM2 in the re-sampled distribution

Wilks (1995), Hamill (1999)



COSMO observations

+ Poland



obs mask 1.5 x 1.5



15-cases “climate”

observed LEPS forecast

EPS forecast EPSRM forecast



15-cases observed vs. forecast
“climate” (average)

observed

EPS forecast

EPSRM forecast



Fine
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