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• The Nonhydrostatic Model LM
• Runge Kutta and Semi-Lagrangian methods (provide 

sufficient accuracy for practical purpooses)
• Z-coordiantes with step and shaved element boundaries
• Direct implicit solvers
• Global nonhydrostatic modelling on isocahedral or 

similar grids

Plan of Lecture



• Modelling Scales from 50 m to 50 km
• Nonhydrostatic Compressible Dynamics  
• Efficient Numerics
• Comprehensive Physics
• Nudging Data Assimilation
• Code Portability
• Mesh Refinement
• Use for Both Research and Operations

Features of the LM - Design Aspects



Dynamics and Numerics
• Advection Form
• Prognostic Variables: u,v,w,T,qv,qc, (qi,qtke,qr,qs)
• Coordinates: Rotated Lat-Lon, Generalized Terrain Following
• Arakawa C / Lorenz Grid Staggering 
• 2nd Order Centred Differencing
• Leapfrog / Split explicit Time Integration (HE-VI)
• Numerical Smoothing: 4th Order Horizontal Diffusion, 

Rayleigh Damping, 3-D Divergence Damping
• Optional Time Integration Schemes: 2-TL RK with 3rd Order 

Advection, 3-TL SI Scheme

Features of the LM - Overview



Grid Structure and Time Integration

SFt +=∂
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Physical Parameterization
• Vertical Diffusion by 

- Diagnostic K-Closure 
- Prognostic TKE

• Grid Scale Clouds by Saturation Adjustment and
- Warm Rain- / EM-DM- / Cloud Ice - Scheme

• Moist Convection 
- Tiedtke Mass Flux Scheme
- Kain Fritsch Scheme with CAPE-Closure (untested) 

• Radiation: Two-Stream Scheme (Ritter, Geyleyn, 1992)  
• Soil Processes

- Two Layer Extended Force Restore Soil Model 
- New Multi Layer Soil Model Including Melting and 

Freezing 

Features of the LM - Overview



Boundary Conditions
• Periodic, Wall or Relaxation Boundary Conditions for Idealized 

Cases
• One-Way Nesting by Davies Relaxation for Real Cases

Interpolated from GME (GME2LM), IFS (IFS2LM), LM 
(LM2LM, Current Work) 

• Two Way Interactive Self Nesting (Current Work)
Initial Conditions

• Artificial Data for Idealized Cases (User Defined!)
• Interpolated from GME or IFS; DFI Initialization
• Continuous Data Assimilation 

Nudging (u,v,p,T,qv); External Analysis of SST; Variational
Soil Moisture Analysis (00UTC); Latent Heat Nudging for radar 
reflectivities

Features of the LM - Overview



Monthly Precipitation Sum for September 2001 



Precipitation accumulated for the period 10 Aug 06 UTC - 13 Aug 06 UTC 
GME forecast LM forecast Observation

The Elbe Flood Disaster, August 2002



COSMO - Integration Domains



LM - Configurations at COSMO Centres



COSMO Limited Area Ensemble Prediction System

(Regionalization of the ECMWF Ensemble using LM)
Probability for 2m-Temperature exceeding 20 C Probability for 24-h precipitation exceeding 20 mm



• Mesoscale ensemble
• LM_K: operational cloud prediction model at a scale of dx=2.8 

km (inludes supporting developments in analysis, physics model 
interpretation)

• LM-Z
• Runge Kutta
• Implicit and SL
• Next generation model and global mesoscale model: ICON 

project 

Recent and Current Numerical Developments



• RK is a two time level 3rd order in time scheme, 
involving substepping for fast waves

• Spacial order is 3 or 5 (upstream differencing)
• Approximation conditions concern vert. 

coordiante and phys. interface
• Semi-lagrange: 2nd order in time, 3rd order in 

space, could be easier to achieve efficiency with 
large dt

The Runge Kutta scheme (NCAR)
t+dt

t



• The atmosphere at rest can be represented in Z-
coordinates, but not in terrain following coordinates 

• Stratiform clouds and low stratus are predicted better 
in LM-Z

• Mountain and valley winds are better with LM-z
• Precipitation amplitudes should be better with LM-Z, 

in particular maxima and minima near mountains

Expected advantages of the Z-coordinate



Ilder Heinz-Werner3-D Cloud-Picture 

18 January1998

The mountain related 
bias of convectional 
clouds and 
precipitation is 
supposed to disappear 
with the Z-coordinate



The step-orography
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Shaved elements

•The shaved elements are 
mathematically more correct than step 
boundaries

•By shaved elements the z-coordinate 
is improved such that the criticism of 
Gallus and Klemp (2000), Mon. Wea. 
Rev. 128, 1153-1164 no longer applies 



Cross Section for Flow Over the Alps, Forecasted by Eta Model with Step 
Orography (Right) and with Terrain Following Orography (Left)



• The computation of the fast waves is based on the the 
evaluation of fluxes into a cell

• The evaluation of the fluxes requires weights 
associated with the cell surfaces, which depend on 
their open part

• Advection terms (slow waves) are computed by finite 
difference methods  

The finite volume method for the treatment of the fast waves in 
LM-Z



SKANIA Test: Korrect (left) faulty (right)



SKANIA Test for Z_LM





Test

Without Physics

Dry Physics



NO physics

„dry“ Physics



The Atmosphere at Rest Computed with the Z_LM
Day Night



Test

Day

Night



Cloud water Precipitation



No physics /  Physics



Low stratus



Z-coordinate



• LM-Z                OBS                     LM-tf
28039700 6 to 6



• LM_Z

• LM_tf

28039700+12



• LM_Z                                              LM_tf
28039700+12



• Idealised tests with bell shaped mountain show 
the expected feature of improved wind, 
temperatures and precipitation

• SKANIA Test with LM-Z reveals no problems
• First realistic runs are encouraging. LM-Z 

compared to LM-tf showed large improvements 
concerning the prediction of clouds and 
precipitation.

Current state of LM-Z



• Sufficient Accuracy/high (Spatial) Approximation order 
(Achieved with RK and SL)

• A problem is the combination of high order and conservation
• Approximation condition orography: Z-Coordinate
• Both RK and SL have currently the computational expense of 

second order centred differences / Leapfrog
• One of the keys to numerical efficiency is implicit time 

integration
• Global mesoscale models (achieved on Isocaheronlike grids) 

may be feasible within 15 years

Some Desirable features of Next Generation NH Models



Implicit Approaches
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• The Equations of Motion are homogeneously linearised at each 
Grid Point

• At Each Grid-Point a Problem of Constant Coefficients is 
Defined

• For Each Grid-Point The Associated Linear Problem Can be 
Solved Using an FT and a Linear Problem Specific to Each 
Grid-Point

• The GFT (Generalised FT) Computes the Results of the 
Different FTs Using One Transform

• The numerical cost of GFT is Simlar to that of an FT
• A Fast GFT exists similar to Fast FT

Direct Methods for Locally Homogenized SI



Boundary- and Exterior Points

φ

Point to pose (Artificial) Boundary 
Values

Redundant Points

•Redundant points can be included in the FT

•The result of the time-step does not depend on the 
continuation of the field to redundant points

φφ



• The Fourier Coefficients are the same for the grid 
Points of a Subregion

• The Linearised Eqs.  are different for each Gridpoint
• In Case of only One Subregion the Support Points of 

the derivative     are the Boundary Values
• does not create time-Step Limitations
• GFT Returns the Grid-Point-Values after doing a 

Different Eigenvalue Calculation at Each Point

Organisation of the Implicit Time-Step

x0φ

x0φ



The SI Timestep

Subtract Large 
Scale Part of each 

function

Compute 
Fourier 

Coefficients

Choose 
Gridpoint

Compute next 
time level in 

Fourier Space
Transform BackUse Result Only 

for Chosen Grid-
Point

Do the Above 
for all Other 
Grid Points

Set Boundary Values  
as in Finite Difference 

Methods



Example:1-d Schallow Water Eq
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Operation in Fourier Space

Definition:

SI Scheme:
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Computational Example: 1-d Schock Wave

The time Step could be increased up to the CFL of advection (10 m/sec)



1-d Shallow Water Equs. Periodic boundaries with bell shaped 
initial disturbance



2-d Shallow Water Equs. with Barrier



• A direct si- method was proposed
• The method is based on a generalised Fourier 

Transform
• The generalised FT is potentially as efficient as the FT 

(fast FT)
• 1-d and 2-d tests have been performed

Implicit Conclusions



• Current approach: lat lon and Kurihara will not be discussed
• The Baumgardner principle
• Great circle grids for triangles and rhomboids/ Isocahedron, 

cube and 8 surface body grid stencils
• Computation of directional derivatives of a given order
• Overview of numerical concepts
• Interpolation
• Rooftile grid
• Dual grid and conservation
• Choice of options and modular workplan
• Conclusions

A family Grids on the sphere 



• Is o3 important? ( “next generation Dynamics”? 
Can  issues addressed in WRF and LMK be 
incorporated? Can current nh-solutions/ solutions 
under reserach be incorporated: i.e. FT 
Preconditioners?)

• Model development with limited 
resources? (Are current developments 
incorporated easily? Fallback positions? Baumgardner

doctrine?)

Points of concern in this lecture



• No global coordinate
• Keep approximation order at grid interfaces
• The faithful are rewarded by having no 

problems carrying plane discretisations to the 
sphere

The Baumgardner principle
(Rules of good behaviour on triangels

Proven for o2, not yet for o3

Supported by the success of Skamarock nesting)



• Nonhydrostatic
• Accuracy: Order 3 or higher in space [and time]
• (Observation of approximation conditions: smoothness            

(for third order schemes), Smooth physics interface, smooth 
orography (dh<dz) or z-coordinate)

• Conservation: mass, energy
• Efficiency (computer time and development time)
• (Positivity of advection: flux correction)
• (Nesting option: Skamarock method)
• Ability to incorporate developments for nh models

Desirable features of discretisations on the sphere

4)( x∂
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• Structured (index i,j)
• Each line of points j,i  j,i+1  j,i+2............ is on a 

great circle 
• Obtained by projecting bilinear grids to the 

sphere
• Projection of any vector r to the sphere with 

image ra: 

Quasi regular grids

||/ rrar rrr
=



• Four points r1,r2,r3,r4 may have any position in space
• Divide the sides of the rhomboid equally and connect opposite 

points
• Bilinear grid theorem: each coordinate line intersects each line

of the crossing coordinate line family. The grid is regular in 
each direction.

Bilinear grids



• NP=3                       NP=4                             NP=5

Orange cut grids 



• Edges grid                                        Edges grid
• Order3                                                 Order 2 

Redundancy 19:9 Redundancy 6:5 or 5:5

Grid Stencils Baumgardner



• Area grid                                          Area grid
• Order3                                   Order 1 (Finite Volume)            

Redundancy 13:9 Redundancy  4:3

Grid Stencils Baumgardner



• Edges grid
• Order 3
• Local coordinate, for example local geographic

– Possibility 1:

irregular, but locally nearly regular grid
Non orthogonal grid

– Possibility 2:

Rooftile grid: regular and nearly orthogonal

Great Circle Grid Stencils



• Grid redundancy is an issue for all methods 
relying on interpolation

• Cascade interpolation for regular grids
• Serendipidity interpolation: the part going into 

2d and 3d look like linear.
• Serendipidity grids replace forecasts of some 

points by order consistent interpolation

Interpolation



• Grid matching at most boundaries
• nearly orthogonal

Rooftile Grids

•Interpolation O3 for boundary 
values

•for 100 points per tile grid 
irregularity is 1 %



• Triangles are used to match areas (implying irregular shaped 
cells or double grid covering). All other boundaries match

Rooftile Grids, 4-Body



• Finite Volumes: Bonaventura choice, best on regularised grids, 
conservation possible, often low order, tested by Ringler and Steppeler

• Baumgardner: suitable for somewhat irregular grids, tested for    order 2
• Baumgardner Order2: Amplitudes on edges; small grid redundancy
• Baumgardner Order3: Amplitudes on triangle surfaces, very irregular grid 

for plane waves, yet untested, (some grid redundancy)
• Great circle grids: very similar to limited area discretisations, order  2,3 

easily possible, RK, SI, SL, adaptation of all local developments easy (grid 
redundancy no problem)

• Tiled grids: very uniform grids (~1%), less elegant look, spectral elements 
possible)

• Serendipidity grids (can be derived as a further development of SE)

Discretisation Options, Based on Interpolation



• Finite Volumes: 1
• Baumgardner Order2: 1
• Baumgardner Order3: 1
• Great circle grids: RK, SI, SL 1 now 3 seem possible
• Tiled grids: 1.5
• Serendipidity grids 3
• Unstructured
• Conservation 

Saving factors of Discretisations

3.1 1−

1

2
−



• Use conservation form, compute fluxes
• 1st possibility: WRF-method
• 2nd: Flux correction
• Issue: order of representation of the conserved quantity

Dual grid and conservation



• Grid interpolation: 3rd order
– In a square grid grid redundancy is so large (64:15) that it becomes a 

problem
– Some of the redundant grid points can be interpolated from the non 

redundant ones in an order consistent way, resulting in:
• efficient interpolation
• Saving of 27:7 from redundantly forecasted points
• Easier for posing boundary values and theoretically more satisfying in this 

respect
– The field is known to 4 rth order error at all points, meaning that c-grid 

structures for fast waves can be generated. 

• Spectral elements:
– Some of the basis functions can be shown to contribute in a neglegible

way
– avoiding these contributions leads to the same grid structures and saving 

as above

Serendipidity grids



• RK achieves sufficient accuracy, all schemes discussed 
are about equal in efficiency

• Increase of efficiency by a factor of 10 is possible by 
implicit methods and serendipidity grids 

• Combined Order 3 and conservation is possible using 
the dual grid method

• Great circle grids based on the isocahedron allow to 
make local models global

Conclusions




