

CANADIAN AREA nd Cultural C

Spring Colloquium on
'Regional Weather Predictability and Modeling' April 11 - 22, 2005

1) Workshop on Design and Use of Regional Weather
Prediction Models, April 11 - 19

2) Conference on Current Efforts Toward Advancing the Skill of Regional Weather
Prediction. Challenges and Outlook, April 20 - 22

301/1652-19

"Initialization" unsing an Iterative Matsuno Style Scheme in the Eta Model Adjustment Stage

> L. Lazic University of Belgrade Serbia & Montenegro

"Initialization" Using an Iterative Matsuno Style Scheme in the Eta Model Adjustment Stage

Lazar Lazic E-mail: lazar@ff.bg.ac.yu

Introduction

- **An iterative Matsuno or a "super-Matsuno" style scheme is applied** as *a filter* in the Eta Model.
- The scheme is applied for the model's *adjustment terms only*.
- During *two hours* (one backward and one forward) "initialization" procedure includes full/diabatic model except convection.
- After this **iterative dynamic diabatic "initialization",** standard model integration is continued, now *very much free of noise*.
- *The super-Matsuno style scheme* is found to *balance* initially unbalanced external and internal modes and to significantly *reduce* the high-frequency.

Experiments Set-Up

- *Initial conditions for local bora wind* are of 0000 UTC 01 December 1990.
- Bora is a local, cold, strong, north or north-east low-level wind over the Adriatic coast.

Experiments Set-Up (cont.)

 Initial conditions for tropical cyclones are of 0000 UTC 18 January 1987, selected for *the tropical cyclones Connie and Irma* from the AMEX (Australian Monsoon Experiment).

Adjustment Process in the Eta model

 The *forward-backward time integration scheme* for the *adjustment terms*.

$$
\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + f v,
$$

$$
\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y} - fu,
$$

$$
\frac{\partial h}{\partial t} = -H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right).
$$

• The mass field is updated first using the forward scheme, and *then* the values of the pressure gradient terms are used to update *the velocity components* using *the backward scheme*.

Adjustment Process in the Eta model (cont.)

 \bullet For *the Coriolis terms the trapezoidal implicit scheme* is used, which is always neutral.

$$
u^{n+1} = u^n - \Delta t g \delta_x h^{n+1} + \frac{\Delta t}{2} f(v^n + v^{n+1})
$$

$$
v^{n+1} = v^n - \Delta t g \delta_y h^{n+1} - \frac{\Delta t}{2} f(u^n + u^{n+1})
$$

$$
h^{n+1} = h^n - \Delta t H \left(\delta_x u + \delta_y v \right)^n + \left(\Delta t \right)^2 w g H \left(\nabla_x^2 - \nabla_x^2 \right) h^n
$$

 \bullet *Scheme definition:*

- *The super-Matsuno scheme* (Fox-Rabinovitz, 1996) is a generalization of the Euler backward (Matsuno) scheme, to include *additional corrector iterations*.
- Applying this scheme with the backward scheme for the Coriolis terms:

z- *predictor:* - *corrector:* 1 *1 * $\lambda^{+1} = u^n - \Delta t g \delta_{x} h^n + \Delta t f v_{*}^{n+1}$ $n \sim \Lambda$ ¹ *x* $u_*^{n+1} = u^n - \Delta t g \, \delta_x h^n + \Delta t f v$ 1 *1 * $\lambda^{n+1} = v^n - \Delta t g \delta_{v} h^n - \Delta t f u_{*}^{n+1}$ $-\,\Delta$ − $-\,\Delta$ *n n <i>n <i>A <i>A* *<i>A***** *<i>A***** *<i>A y* $v_*^{n+1} = v^n - \Delta t$ g $\delta_v h^n - \Delta t$ fu $\left({\cal S}_x u + {\cal S}_y v \right)$ *n xy* $h_*^{n+1} = h^n - \Delta t H \, (\delta_* u + \delta_* v)$ $^{+1}$ *

$$
u_1^{n+1} = u^n - \Delta t g \delta_x h_{*}^{n+1} + \Delta t f v_1^{n+1}
$$

$$
v_1^{n+1} = v^n - \Delta t g \delta_y h_{*}^{n+1} - \Delta t f u_1^{n+1}
$$

$$
h_1^{n+1} = h^n - \Delta t H \left(\delta_x u_{*} + \delta_y v_{*} \right)^{n+1}
$$

along with *iterations of the corrector step*

$$
u_2^{n+1} = u^n - \Delta t g \delta_x h_1^{n+1} + \Delta t f v_2^{n+1}
$$

\n
$$
v_2^{n+1} = v^n - \Delta t g \delta_y h_1^{n+1} - \Delta t f u_2^{n+1}
$$

\n
$$
h_2^{n+1} = h^n - \Delta t H \left(\delta_x u_1 + \delta_y v_1 \right)^{n+1}
$$

\n
$$
u_k^{n+1} = u^n - \Delta t g \delta_x h_{k-1}^{n+1} + \Delta t f v_k^{n+1}
$$

\n
$$
v_k^{n+1} = v^n - \Delta t g \delta_y h_{k-1}^{n+1} - \Delta t f u_k^{n+1}
$$

\n
$$
h_k^{n+1} = h^n - \Delta t H \left(\delta_x u_{k-1} + \delta_y v_{k-1} \right)^{n+1}
$$

z where *k* is the *iteration number*.

Computational diffusion:

 \bullet Let us consider *1D gravity wave system* for the second iteration from the corrector step *simple written*

$$
u_2^{n+1} = u^n - \Delta t g \delta_x h_1^{n+1} = u^n - (\Phi_1)_x^{n+1} \Delta t,
$$

$$
\Phi_2^{n+1} = \Phi^n - C^2 (u_1)_x^{n+1} \Delta t.
$$

Using the first iteration from the corrector

$$
u_2^{n+1} = u^n - \Phi_x^{n} \Delta t + C^2 u_{xx}^{n} (\Delta t)^2 - C^2 \Phi_{xxx}^{n} (\Delta t)^3,
$$

$$
\Phi_2^{n+1} = \Phi^n - C^2 u_x^{n} \Delta t + C^2 \Phi_{xx}^{n} (\Delta t)^2 - (C^2)^2 u_{xxx}^{n} (\Delta t)^3.
$$

- \bullet The *first two terms* in rhs represent the *predictor*, or Φ^{n+1}_* and u^{n+1}_* \boldsymbol{u}^{n+1}_* and \boldsymbol{u}^{n+}_* Φ^{n+}_* *n*
- The *first three terms* of rhs represent the *first corrector.*
- The *third rhs term* has the form of a *positive second-order computational diffusion*.
- One more iteration:

$$
u_3^{n+1} = u^n - \Phi_x^{n} \Delta t + C^2 u_{xx}^{n} (\Delta t)^2 - C^2 \Phi_{xxx}^{n} (\Delta t)^3 + (C^2)^2 u_{xxxx}^{n} (\Delta t)^4
$$

$$
\Phi_3^{n+1} = \Phi^n - C^2 u_x^{n} \Delta t + C^2 \Phi_{xx}^{n} (\Delta t)^2 - (C^2)^2 u_{xxx}^{n} (\Delta t)^3 + (C^2)^2 \Phi_{xxxx}^{n} (\Delta t)^4
$$

 \bullet Using definitions of u_*^{n+1} and u_*^{n+1} and Φ_*^{n+1} Φ^{n+}_* *n*

$$
u_2^{n+1} = u_*^{n+1} + (C\Delta t)^2 (u_*^{n+1})_{xx}
$$

$$
\Phi_2^{n+1} = \Phi_*^{n+1} + (C\Delta t)^2 (\Phi_*^{n+1})_{xx}
$$

Expressions for *third iteration*

$$
u_3^{n+1} = u_2^{n+1} + (C\Delta t)^4 u_{xxxx}^n
$$

$$
\Phi_3^{n+1} = \Phi_2^{n+1} + (C\Delta t)^4 \Phi_{xxxx}^n
$$

Final expressions:

- *odd iterations*,
$$
k = 2l - 1 \ge 1
$$
:

$$
u_k^{n+1} = (C\Delta t)^{k+1} u_{(k+1)x}^n + \sum_{l=1}^{(k+1)/2} (C\Delta t)^{2l-2} u_*^{n+1} u_{(2l-2)x}^n,
$$

$$
\Phi_k^{n+1} = (C\Delta t)^{k+1} \Phi_{(k+1)x}^n + \sum_{l=1}^{(k+1)/2} (C\Delta t)^{2l-2} \Phi_*^{n+1} u_{(2l-2)x}^n,
$$

even iterations, $k = 2l \geq 2$ *:*

$$
u_k^{n+1} = \sum_{l=1}^{(k+2)/2-1} (C\Delta t)^{2l-2} u_*^{n+1} u_{(2l-2)x},
$$

$$
\Phi_k^{n+1} = \sum_{l=1}^{(k+2)/2-1} (C\Delta t)^{2l-2} \Phi_*^{n+1} u_{(2l-2)x},
$$

- The *super-Matsuno scheme* contain *higher-order diffusion operators*.
- The *Matsuno scheme* (k=1) contain a *second-order* diffusion operators.
- The *super-Matsuno scheme with k=3* contains *a fourth-order* diffusion operators.
- In our experiments we use *k=3.*

Results – Bora Wind

 The time evolution for the first 6 h of the forecast of *the surface pressure and 500 hPa vertical velocity* at a model grid point I=25, J=18, *without* ("No initialization") and *with "initialization"*

 The mean absolute surface pressure tendency (MPT) is chosen to measure *the global noise level*.

• Uninitialized and initialized 500 hPa geopotential height and sea level pressure fields at *the initial time*

z *Surface pressure tendency* and *the 500 hPa vertical velocity*, with and without initialization, at the *initial time*

 \bullet *The 500 hPa geopotential height* and *the sea level pressure* maps with and without initialization *after 6 h*

z *The 500 hPa vertical velocity* and *the 12-h accumulated precipitation*, with and without initialization, *after 6 h*

z *The 500 hPa geopotential height* and *the sea level pressure* maps with and without initialization *after 12 h*

 Surface pressure tendency and *the 12-h accumulated precipitation*, with and without initialization, *after 12 h*

- *The time evolution* for the first 6 h of the forecast of:
- *Mean pressure tendency,*
- *The 500 hPa vertical velocity* and *surface pressure* at a model grid point I=25, J=18, *without* and *with "initialization"*

Uninitialized and *initialized* 500 hPa geopotential height and sea level pressure fields at *the initial time*

145E

150E

155E

 Surface pressure tendency and *the 500 hPa vertical velocity*, with and without initialization, at the *initial time*

 \bullet *The 500 hPa geopotential height* and *the sea level pressure* maps with and without initialization *after 6 h*

z *The 500 hPa vertical velocity* and *the 6-h accumulated precipitation*, with and without initialization, *after 6 h*

 \bullet *The 500 hPa geopotential height* and *the sea level pressure* maps with and without initialization *after 12 h*

z *The 500 hPa vertical velocity* and *the 6-h accumulated precipitation*, with and without initialization, *after 12 h*

Conclusions

^zThe *super-Matsuno style time differencing scheme* removes the spurious high-frequency oscillations *very efficiently*.

^zAfter initialization fields are *adjusted* and *without noise*. In the control case fields display a high level of noise.

In the *control case* with a standard forwardbackward scheme for the adjustment stage the *noise reduces with time* as well.

Conclusions (cont.)

• The *integration results* with and without initialization after 6 h are *similar*. They are very similar after 12 h and later until the end of the 48-h integration performed.

It is to be expected that *small differences*, given that they have resulted from the removal of spurious initial noise have *to be beneficial,* especially in the data assimilation.