



International Atomic Energy Agency



Spring Colloquium on 'Regional Weather Predictability and Modeling' April 11 - 22, 2005

1) Workshop on Design and Use of Regional Weather Prediction Models, April 11 - 19

2) Conference on Current Efforts Toward Advancing the Skill of Regional Weather Prediction. Challenges and Outlook, April 20 - 22

301/1652-1

ETA Land-Surface, Surface Layer and PBL Parameterization Schemes Lecture I

> F. Freedman San Jose State University CA, USA

ETA Land-Surface, Surface Layer and PBL Parameterization Schemes (Lecture One)

> Dr. Frank R. Freedman\* San Jose State University

freedman@met.sjsu.edu

#### for

ITCP Spring Colloquium on Weather Predictability and Modeling

\* NRC Postdoctoral Fellow: NCEP, 2003-2004

# Acknowledgements

Appreciation expressed to Curtis Marshall, Eric Rogers and Michael Ek (NCEP) for allowing use of several slides contained in this presentation.

# Outline

- Overview of schemes …
  - Land Surface Model (LSM)
  - Surface Layer (SL)
  - > Planetary Boundary Layer (PBL)
- Noah LSM
- Surface Layer
- Planetary Boundary Layer



Lecture 2

# General Physical Process ...

- Vertical transport by turbulence of momentum, heat & moisture to & from surface and atmosphere
- LSM: Calculate surface temperature & moisture (lower boundary condition)
- SL and PBL schemes: calculate transport
  SL: surface through lowest grid layer
  PBL: remainder of grid layers above

# 1D (vertical) Architecture





Coupling II

Turbulent fluxes @ first model level (via PBL scheme)

### $[\mathbf{U}, \mathbf{V}, \boldsymbol{\Theta}, \mathbf{q}] @ \mathbf{z} = \mathbf{h}$

Surface fluxes (LSM, SL, PBL interaction, see previous slide)



# LAND SURFACE SCHEME

### So what does the LSM do?

- Provides albedo for calculating reflected shortwave radiation
- Calculates evapotranspiration (latent heat flux, surface humidity) from soil and vegetation canopy
- Provides ground surface ("skin") temperature for determining surface sensible heat flux and upward longwave radiation
- Includes effects of precipitation, ice, snow, soil & vegetation types, fractional grid area coverage, others ...

# ETA uses Noah LSM

#### From original NOAH model

- National Weather Service (U.S.)
- Oregon State University
- Air Force (U.S.)
- Office of Hydrology

Other groups get involved ... 'Noah' (no acronym)

#### **References:**

- a) Chen & Dudhia (2000, Monthly Weather Review)
- b) Ek et al. (2003, Journal of Geophysical Research)

### Attributes of Noah LSM

- 4 Soil Layers (10, 30, 60, 100 cm thick)
  - Predict volumetric soil moisture (cm<sup>3</sup> liquid/cm<sup>3</sup> soil) and soil temperature in each layer
  - Involves parameters that depend on soil & vegetation "classes"
- Bare Soil
  - 16 distinct soil classes (based on % clay content).
- Vegetation
  - > 24 vegetation/land type classes (short grass, forest, tundra, etc ...)
  - Annual cycle of vegetation greenness
  - Accounts for fractional coverage (seasonally dependent)
- Snow & Ice
  - ➢ Prognostic treatment of snowmelt → snow depth.
  - Treatment of frozen ground (soil ice) and patchy snow
  - Strongly effects surface albedo
- Continuous 3-hour update in fully cycled Data Assimilation System
  (EDAS)



#### **Latest Version: USGS 24-class high-resolution (1-km) vegetation** data set replaces old SiB 13-class 1-degree data set

USGS/EROS 1 km Vegetation Type



# **Latest Version:** New STATSGO 16-class high-resolution (1-km) soils data base replaces old Zobler 9-class 1-degree data set

#### FAO/STATSCO Soil Type



# Surface Energy Balance (SEB) Equation Rn = H + LE + G

Rn = Net Radiation H = Surface Sensible Heat Flux LE = Surface Latent Heat Flux G = Ground Heat Flux

Rn - G = H + LE

"Available Energy" for Turbulent Fluxes

**SEB Equation solved for surface temperature** 

Soil moisture, soil & vegetation class, snow physics, etc ... used to calculate each term

### Soil Moisture & Temperature Equations

- Soil Moisture (Θ):

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left( D \frac{\partial \theta}{\partial z} \right) + \frac{\partial K}{\partial z} + F \theta$$

- "Richard's Equation" for soil water movement
- D, K functions (depends on soil class)
- F0 represents sources (rainfall) and sinks (root extraction)
- Soil Temperature

 $C(\theta)\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left( K_t(\theta)\frac{\partial T}{\partial z} \right)$ 

– C, K<sub>t</sub> functions (depend on soil texture, soil moisture)

- Soil temperature information used to compute ground heat flux

# Evapotranspiration

# $E = E_{dir} + E_t + E_c$

### WHERE:

- E = total evapotranspiration from combined soil/vegetation
- Edir = direct evaporation from soil
- $E_t$  = transpiration through plant canopy
- E<sub>c</sub> = evaporation from canopy-intercepted rainfall

Note: SL equations incorporated into each term so that equation solved for E (rather than surface humidity)

# **Illustrative Example**

Ground Heat Flux (G) & Thermal Conductivities (K)

$$G = \frac{K_{eff} \left(T_s - T_{s1}\right)}{\Delta z_s + \Delta z_{s1}}$$

- where K<sub>eff</sub> is a grid-area ("effective") thermal conductivity
- involves weighted averages of bare soil, vegetation and snow values
- weights dependent on fractional vegetation and snow coverage
- T<sub>s</sub> (surface temperature), T<sub>s1</sub> (temperature in first soil layer)
- $\Delta z_s$  (snow depth),  $\Delta z_{s1}$  (depth of first soil layer)

## **Soil Parameters**

Example #1: Thermal conductivity through bare soil



## **Soil Parameters**

Example #2: Thermal conductivity through vegetation canopy (expressed as ratio to bare soil value)



#### **December Green Vegetation Fraction**

DEC Green Leaf Fraction



based on NESDES monthly 15 x 15 km, 5 year climatology

### June Green Vegetation Fraction

JUN Green Leaf Fraction



### Surface Albedo (snow free)

Albedo, Jul



### **Snow Information**

- cover: 23-km N. Hemisphere grid
- produced daily by human analyst
- multiple data sources:
  - GOES visible
  - SSMI snow cover
  - station reports
  - NIC ice cover
  - AVHRR visible

cover: http://hpssd1en.wwb.noaa.gov/SSD/DATA/snow/archive depth:

http://lnx29.wwb.noaa.gov



Example NESDIS snow/ice cover

### Snow Information on another day

- cover: 23-km N. Hemisphere grid
- produced daily by human analyst
- multiple data sources:
  - GOES visible
  - SSMI snow cover
  - station reports
  - NIC ice cover
  - AVHRR visible

cover: http://hpssd1en.wwb.noaa.gov/SSD/DATA/snow/archive depth:

http://lnx29.wwb.noaa.gov



Example NESDIS snow/ice cover

### Two-meter Temperature Forecasts (Winter)



### Two-meter Temperature Forecasts (Summer)



Upper Midwest U.S. Region

## More results ...



February 2001 Eastern U.S. Region

### Specific Site (Winter)



North Platte, Nebraska 02 February 2001

Specific Site (Summer)



Champaign, Illinois 30 August 2000

# LECTURE TWO ...

- SURFACE LAYER & PBL
- OFFLINE TESTING & RESEARCH