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1. Introduction

One of the most well known aspects of quantitative ecology is the study of
deterministic differential equations for the change in time of populations of
individuals — different species, for example

An example is the Lotka-Volterra equations describing competition
between species A, having N4 individuals in the population, and species B,
having Ng individuals in the population:

dN
—> = raNa(l — Na/Ka) — baNaNg
dN
— = raNe (1~ Np/Kg) — bpNaNp

In reality, population dynamics is stochastic — populations fluctuate due
to random births and deaths, for instance
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For large populations expect that deterministic description is valid, but for
small population sizes stochastic effects will be important

For the example of two species in competition — and more generally —
would like to:

@ Formulate an individual based model (IBM) which is stochastic

@ Find the deterministic equation that it approaches for large
population sizes (expect that population-level descriptions, such as
the Lotka-Volterra equation, should emerge by taking the N — oo
limit of the IBM)

@ Carry out the same procedure for spatially explicit models

@ Investigate the nature of the stochasticity for large, but finite, N
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2. The master equation

We begin with a stochastic system which consists of a set of N states
labelled n=1,2,... . N

For example, n could be the number of individuals in a population or the
number of occupied patches in a metapopulation (to describe the number
of individuals in two populations we would need m and n)

There will be a transition rate from state n to state n’ caused by births,
deaths, competition, predation, colonisation, extinction,... This rate will be
denoted by T(n'|n).

Then the probability of finding the system in state n at time t changes
according to the master equation:

dP(n,t)
dt

=) T(nln")P(n',t) = > T(d'|n)P(n,t).

n’#n n'#n

Alan McKane (Manchester) Stochastic models in population biology | Trieste May 2005 5/ 14



For a one-step process, transition rates are only non-zero when n’ = n+1
and n = n—1:

Then the master equation takes the simpler form

dP(n,t)
dt

= T(nln+1)P(n+1,t)4+ T(nln—1)P(n—1,t)
— {T(n—=1|n)+ T(n+1|n)} P(n,t)

Given the T(n|n"), the master equation is a differential-difference equation
for the probabilities P(n, t)

A simple example is the asymmetric random walk:

T(n+1|n) = A; move in the positive direction

T(n—1|n) = p; move in the negative direction
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What methods are available to analyse master equations?

e Linear one-step processes may be solved exactly by first finding the
generating function f(z,t) = > P(n,t)z"

Example The birth and death process: T(n+ 1|n) = An and
T(n—1|n) = pun where X\ and p are constants.

Then f(z, t) satisfies the equation

of of

3 (2= 1)(Az = M)g

The general solution to this equation is

Flz,t) = & ( (&ZZ :B)euu)r) |

where @ is an arbitrary function.
If the initial condition that there are m individuals at t = 0 is imposed then

_ |z =1t — (2 — ) ]”
fz,t) = [/\(z —1)e(A-mt — (\z — ,u)]
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e The stationary state can be expressed as a simple product:

P.(n) = g”;igjlz : °;1g0 Ps(0); n=1,....N,

where g, = T(n+ 1|n) and r, = T(n—1|n)

The constant Ps(0) is determined by normalisation:

N
Y Pi(n) = P(0)+ ) Ps(n)=1
n=0 n>0
& n—18n—2 80
P -1 g e 18n—D . . .
= (P+(0)) DD

Example The Hubbell model. If n; is the number of individuals of species i
in the local community, J is the total number of individuals of all species
and m is the immigration parameter, then
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T(ni+1ln) = (1—m) Tyt P
B n; (J — n;) n; |
T(nj—1ln;)) = (1—m) T —l—m—j (1-—p;)

The stationary probability distribution, Ps(n;), can be determined in
closed form to be:

J) B(n; + pf, nf — n;)

Peio) = () "B m =

where

S
=%
I
N
=
I‘I
3|3
R i

|
!
The

and B(a,b) =T(a)l(b)/T(a+ b) is the beta-function
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e For large N can use van Kampen's approximation scheme — writing
n= No¢(t)+ N'/2x and expanding master equation in powers of 1/N.

N = 200
R ' I ' | ' |

c=05e=1m=0.05

t=0.1

t=0.5

t=1. =

=25

c=025e=1m=0.005

=10,
— Stationary distibution
- Exagt
t=5. -——- Approximated

=25 et =05
: | /\l /\ | /\ !

P(n.t)

To leading order (N — o0) get equation for ¢(t) (macroscopic equation).
Next order get the Gaussian broadening of P(n,t). Next order after this
non-Gaussian corrections
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3. Individual and population level models

Begin with the simplest case of competition within one species

We suppose that the population dynamics of the system can be essentially
described by three processes:

AE 2. AA (birth)
AA — AE (competition)
A 4 E (death)
Here E is a null or space (in the spatial context) — it allows for the

population of species A, n, to grow or decline, since the population of the
nulls is N — n

What is the time evolution of the system?

Alan McKane (Manchester) Stochastic models in population biology | Trieste May 2005 11 / 14




e Sample the patch — for i of the time randomly choose two individuals
and allow them to interact. For (1 — u) of the time choose only one
individual randomly

e Simple combinatorics gives:

Probability of picking AA is ,u%

(N—1)
Probability of picking AE is 2u% EIX/: IB

Probability of picking A is (1 — )

This gives the following transition rates:

T(n+1|ln) = 2,ub—,%(%:r17)
T(n—1|n) = pc%(g:ll)—k(l—u)d%,
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Writing n/N = ¢(t) + N~1/2x in the master equation and equating terms
of order N°, N=1, N=2, ... gives at leading order the following
deterministic equation
dNa
dt
where raq and K4 are given in terms of b, c and d

— rANA (]. — NA/KA)

For two species A and B the interactions are

AA 2L AE, AB “, AE, BA =% BE, A %
BB 2, BE, AE 2. AA. BE 2. BB, B-%,

Taking the limit N — oo gives the deterministic equations given in the
Introduction:

dN
d—i'A = FANA (1 — NA/KA) — bANANB
dN
~— = N5 (1~ Ns/Kp) — bsNaNs
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@ Stochastic effects occur in many different areas of ecological
modelling. Master equations — and the associated formalism — are
a useful way of analysing these systems

@ The stochastic model may be investigated systematically within a
1/N expansion

@ The PLM may be derived and the parameters of the model related to
those of the ILM

Some references:

Phys. Rev. E62, 8466-8484 (2000)
Theor. Popul. Biol. 65, 67-73 (2004)
Phys. Rev. E70, 041902 (2004)
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