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In the previous two talks the use of master equations and associated

formalism in the study of stochastic models in population biology was
described in the context of two very well known situations: competition
between species and predator-prey interactions

Here the application of similar ideas to two other areas will be discussed:

(1) Metapopulation models (spatial and non-spatial)

Here the stochastic variable will not be the number of individuals of a

particular type, but the number of patches which are occupied by a

population

(2) Models of biodiversity

Here the stochastic variables will still be the number of individuals of a

particular type, but there will be a large number of these different types
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A metapopulation is a population of populations - a group of local

populations in patches which are either occupied or unoccupied

Population size of each patch unimportant
- focus only on persistence

Patches can become occupied by colonisation from other patches, or may
become unoccupied due to extinction of the local population

Suppose that there are N patches, of which n are occupied

Would like an equation for P(n, t)
occupied at time t

the probability that n patches are

If we also allow for the possibility of a mainland "raining down" migrants
on to the islands, then there are 3 types of process:
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" Extinction events: let e be the rate of extinction of a single population

" Colonisation events: let c be the rate of colonisation of an unoccupied

patch from an occupied patch

" Migration events: let m be the rate of immigration into an unoccupied

patch from the mainland

This gives the following transition probabilities:

n	 /

	

fl\
T(n+1n)

	

(cH-m)(1_)


	

n
T(n-1n) = e-

The N -* oc limit of the model is the Levins model:

df
	= (cf+ m)(1 - f) - ef,

dt

where f(t) is the fraction of occupied sites at time t
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In spatially explicit metapopulation models can incorporate more realistic

features e.g. internal colonisation should depend on local density of

occupied sites

Model 1 The lattice metapopulation model. Patches are sites on a regular

square lattice.

Colonisation takes place only from the z nearest neighbours of an available

site

= 4 or 8 (depending on the neighbourhood scheme chosen)
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Model 2 Spatially realistic model (Hanski). Incorporates landscape
structure: position and area of every patch in the metapopulation

" Patch extinction rate inversely proportional to patch area: E1 e/A1

Probability of an extinction event in whole patch network in time öt

N

	

N

= > E1p1öt = ) -p6t,





where




0, if patch I is empty
pi=

( 1, if patch I is occupied

Alan McKane__(Manchester)	 Stochastic models in population biology III	 Trieste May 2005	 11 / 22






Probability of a colonisation event in the whole patch network in time 6t

N
= Ci(i - p)8t,

where	
N

C1 = c)pjAjexp(-cd)+ m

jˆi

dd = distance between patches I and j

1/of is the average migration distance
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Imagine an island (the local community) consisting of N individuals of S

possible species (typical values used in simulations might be N 50, 000
and S 300). The number of individuals is fixed, and not all possible

species may be represented on the island

Immigration occurs from a metacommunity, but in such a way that any

immigrants simply displace individuals in the local community, so that N
still remains fixed

We can think of the species as nodes of a graph labelled by i 1
.... , 5,

and the links between the nodes as representing the (predator-prey)
interactions between the species of the two nodes being joined

This interaction will be given by the single real number c21 for the link

from jto I
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Links from a node to itself are not allowed, and so the matrix !1 has zero

entries on the diagonal

The antisymmetric matrix 5d =- Qjj - c2i has a more direct interpretation
as the "score" of species I against species j:

(i) If Sj > 0, then j acts as a resource for I

(ii) If S1 0, there is no interaction between i and j
If Sj < 0, then I acts as a resource for j

How do we specify 2?

Since connectivity seems to be an important quantity will assume that Q

has a fixed connectivity C.

Other than this, and the fact that the diagonal entries are zero, we will not

impose any other restrictions on

If the connectivity of !1 is C, then the connectivity of S Is

C*1_(1_C)2

Alan McKane__(Manchester)	 Stochastic models in population biology III	 Trieste May 2005	 15 / 22






What are the dynamics of the process?

(1) With probability (1 - ,u), pick two individuals at random. Suppose

they belong to species I and j, and that Sij ˆ 0. Replace the individual

belonging to the species which has a negative score against the other

species by a new individual of the more highly scoring species

For example, if Sij > 0, the total number of individuals belonging to

species I goes up by 1, and the total belonging to species j goes down by 1.

If Sij 0, no action is taken

(2) With probability ,u, pick an individual at random. Replace it by
another individual of any of the S species

A numerical simulation can now be carried out - starting with, for

instance, the off-diagonal entries of Q assigned in a purely random way at

tO

But can any progress be made analytically?
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A mean-field approach can be used to write down a master equation which

is tractable as follows:

Focus on one species - call it species A. Lump the other (S
-

1) other

species together and call this species B. It can be regarded as some kind

of average species - a kind of effective background population with which

species A interacts

Rule (1) involves picking two individuals. If both individuals belong to

species A or species B no action is taken.

The probability of selecting an A and a B is

2n(N-n)
N N-i

The probability that SAB is non-zero is C and, on average, in half the
events the individuals from species A will have a higher score than the

individuals from species B, i.e., SAB > 0, and the other half of the events

SAB<°
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This gives the following transition rates:

T(n+1n)			 c2
N-		n)

2 N(N-1)

T(n- 1n) - C1 2 (N-n
2 N(N-1)

Using only rule (1) leads to a process where eventually only one species
survives. To create diversity, we need rule (2): with a probability p, pick
an individual at random. Replace it by another individual of any of the S

species, with a probability p, the relative abundance of species A in the

metacommu n ity.

In our model we took p 1/S

So the total transition rates are:

T(n+ln)

T(n-ln)

n (N-n





	n(N-n)	 n /	 1'= (1-

N (N 1)
+		N S

i)C	
	(N -1)

+	 1 -
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The above model difFers from the Hubbell model in two ways:

(1) The Hubbell model has an evolved metacommunity, while the above

model has a uniform metacommunity

(ii) There is no equivalent of the matrix S, which gives a "score" to each

species i against other species j in the Hubbell model. In other words, it

has no rule which ranks one species of the local community above another

Once the mean field approximation has been made, the model described

above reduces to the Hubbell model. Then exactly the same calculations

may be carried out, for example, the stationary probability distribution,

Ps(n1), can be determined in closed form and it has exactly the same form

as in the Hubbell model

The species abundance distribution, S(n) , is the number of species in the

system having n individuals. It is proportional to the stationary probability
distribution, Ps(n), in the model
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Stochastic effects occur in many different areas of ecological modelling.
Master equations - and the associated formalism - are a useful way of

analysing these systems

The formalism naturally generalises to spatial models

The 1/N expansion provides a systematic method for investigating
stochastic models of these types. It can uncover novel effects such as a
PLM which differs from the one usually written down on phenomenological
grounds and cycles in predator-prey systems which are significant for
moderate values of N, but which vanish when N - oc
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