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Cosmological N-body

• Science case: non-linear evolution of self-
gravitating dark matter

• Specs: mass resolution, length resolution,
speed

• Applications: halo statistics, gravitational
weak/strong lensing, halo structure/shapes,
etc

• First two require high mass resolution,
modest length resolution: perfect for PM



The Rise and Fall of PM

• Easy to code, very fast, large number of
particles, memory limited.  Vendor
optimized FFTs achieve very high
efficiency on commodity hardware: video
gaming.

• Worst case for parallel machines: FFT
moves all data several times per time step.
O(1) communication/computation.



Parallel PM History

• Farrel+Bertschinger (1994): HPF on CM5

• PMtree: Xu/Bode, Gadget, Dubinski/Kim

• P^3M: Hydra, Shirakov

• Tree codes have swept the parallel field
(gasoline, gadget, partree, ART, Humble,
Salmon&Warren, …): high adaptive
resolution, high
computation/communication ratio



Parallel N-body Challenge

• Speed – FLOP/particle/timestep

• Memory – bytes/particle

• Latency – microsec/step

• Bandwidth – bytes/particle/step

• Portability – MPI

• Efficiency – vendor library

• Availability: free



Theoretical Limit

• Memory: 6 numbers/particle

• Computation: 6/particle+gravity O(n log n)

• Bandwidth: O(n2/3) -- negligible

• Latency: 1 timestep – O(minutes)



Hardware Trends

• Celeron node + gigE: $200/node (fully
switched), 10 Gflop/node = $20/Gflop!

• Typical codes cannot use SSE3, they run
at ~1% of peak speed.  FFT’s run at over
50% of peak.

• Low latency expensive: Infiniband =
$1000/node (4 _s, 30x faster than GigE).

• Local network cheap: 3-D torus



Parallel FFT
Density: Cubic-slab (move all data)

2x1-D FFT

Transpose

1-D fft

Slab-cubic

Do forces

Data moves 3x, only 2.5 log2(N) operations.

12 bytes moved,100 operations.

P4: 10 GFlop/sec, GigE: 0.1 GB/sec,
network back plane usually much worse.



Gravity

• Non-local: need for high bandwidth, low
latency?

• NO: long range force is smooth.  E.g. Tree
code.

• Decompose force into short range (which
determines communication costs) and
long range (can be done on coarse grid)





Computing Kernels

Least squares solution for the grid force



16/4 LSQ matching error





PMFAST architecture

• 37123 fine grid cells, 9283 coarse grid,
18563 (~6 billion) particles on CITA 32
proc itanium-1 cluster

• 2 time steps/hour

• 200 Mpc run takes a week.

• Initial conditions with similar 2-scale
decomposition (Trac 2004)



Animation



Reionization

• First objects:

• 21cm @ 20>z>6

• 70-200 Mhz: TV 4-11

• ¶§T = 23 mK, ~0.3 mJy

• Angular scale
5’<¶®<20’, freq res 500
khz

z=10 simulation, Furlanetto et al, 2004





Lensing of diffuse sources
(w/ T. Lu)

• Reionization structures are ideal lensing
sources: high-z, small scale structure, full
redshift info.

• Naive procedures: variance maps

• optimal shear and magnification
reconstruction

• power spectrum estimation



Naive variance maps

• Scenario: single lens plane at zl, many
source planes at zs, _(x) (Pen 2003)

• Smooth source at fixed angular scale

• Power spectrum makes variance
dependent on smoothing scale

• At fixed point on sky, average variance
along the line of sight gives kappa
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Optimal max likelihood



Conclusions
• PMFAST highly efficient: asymptotically no

memory overhead, computing is FFT
dominated, uses IPP FFT libraries

• Works well on slow networks: cheap
clusters.

• Freely available:
http://www.cita.utoronto.ca/webpages/code/pmfast/

• Current public version slab decomposed,
cubic version under test.

• P3M under study.


