Theoretical and Observational Studies of Topology of Large Scale Structure Study of Space and Structure through Shapes of Large S cale Structures

2005. 6. 1

Changbom Park (Korea Institute for Advanced Study)

Why is topology study useful?

1. Gaussianity of the linear (primordial) density field pr edicted by simple inflationary scenarios

2. Topology of galaxy distribution at NL scales sensitive to cosmological parameters & t
 o galaxy formation mechanism

3. Direct Intuitive meaning

Large Scales Primordial Gaussianity Small Scales Galaxy Formation Cosmological Parameters

Genus – A Measure of Topology

• **Definition**

G = # of holes - # of isolated regions

in iso-density contour surfaces = $1/4\pi$ \int_{S} dA (Gauss-Bonnet Theorem) [ex. G(sphere)=-1, G(torus)=0,

: 2 holes - 1 body = +1

Gaussian Field

Genus/unit volume $g() = A (1-2) \exp(-2/2)$ where $=(_-__b)/__b_$ & $A=1/(2\pi)^2 < k^2/3 > 3/2$ if P(k)~kⁿ, A R_G³ = $[8\sqrt{2\pi^2}]^{-1} * [(n+3)/3]^{3/2}$

• Non-Gaussian Field (Toy models)

Clusters

Bubbles

HDM

History of LSS Topology Study

I. Early Works

- 1986: Hamilton, Gott, Weinberg; Gott, Melott, Dickinson
 smooth small-scale NL clustering to recover initial topology
- 1987-8: GWM, WGM, MWG, Gott et al.
 - cosmological & toy models. R_G >3 r_c to recover initial topology
- 1989: Gott et al. observed galaxies, dwarfs, clusters
- 1991: Park, Gott gravitational & biasing effects
- 1992: Weinberg, Cole PS, initial skewness, biasing effects
- **1994: Matsubara** 2nd order perturbation in weakly NL regime
- 1996: Matsubara redshift space distortion in L regime
- 1996: Matsubara, Suto gravitational & z-space distortion
- Etc....

II. Recent Works

- 2000: Colley et al. Simulation of SDSS
- 2001, 2003: Hikage, Taruya & Suto dark halos (analytic & numerical)
- 2003: Matsubara 2nd orber perturbation theory
- [Minkowski functionals (Mecke, Buchert & Wagner 1994; Schmalzing & Buchert 1997 etc.)]

12

III. 3D genus analysis of observational data

1989: Gott et al.	- CfA 1 etc.
1992: Park, Gott, & da Costa	- SSRS 1
1992: Moore et al.	- IRAS QDOT
1994: Rhoads et al.	- Abell Clusters
1994: Vogeley et al.	- CfA 1+2
1997: Protogeros & Weinberg	js - IRAS 1.2Jy
1998: Springel et al.	- IRAS 1.2Jy
1998: Canavezes et al.	- IRAS PSCz
2002: Hikage et al.	- SDSS EDR
2003: Hikage et al.	- SDSS LSS Sample
2004: Canavezes & Efstathiou	us - 2dFRGS

IV. 2D Genus (LSS)

• 2D genus before SDSS

- Suggested by Melott (1987)
- Coles & Plionis (1991): Lick Galaxy Catalogue
- Plionins, Valdarnini, & Coles (1992): Abell and ACO cluster catalogue
- Park et al. (1992): CfA Slice
- Colley (2000): Simulated SDSS
- Park, Gott, & Choi (2001): HDF
- Hoyle, Vogeley & Gott (2002): 2dFGRS

• 2D genus with SDSS

 Hoyle, Vogeley & Gott (2002): weak evidence for variation in the genus with galaxy type

Current status of LSS topology study

1. Large scales (>> 10 h⁻¹Mpc)

Small survey size → No strong constraints on primordial Gaussianity

2. Small scales (< 10 h⁻¹Mpc)

Little study so far Effects of gravitational evolution, galaxy biasing & internal physical properties of galaxies, redshift-space distortion ...

Effects of Gravitational Evolution, Biasing, & Re dshift Space Distortion on Topology

COM Simulations (Ki m & Park 2004. 7) TreePM code GOTPM (Dubinski, Kim, Park 2003) 2048³ mesh (initial condition) 2048³ CDM particles 1024 & 5632 h⁻¹Mpc size boxes (>30 maxR_G) 50 & 275 h⁻¹kpc force resolutions

FOR PRECISION COMPARISON between cosmological models with the real universe

Dark Halo Iden tification

(Kim& Park 2004: • CDM 1024 h⁻¹Mpc)

Physically Self-Bound

Halo centers - local density peaks

Binding E wrt local ha lo centers

Tidal radii of subhalo s wrt bigger halos

Halos with >=53 parti cles (5x10¹¹ M)

[Kim & Park 2004 : 5632 & 1024 h⁻¹Mpc]

N-body simulation parameters

Table 1: Simulation Characteristics

	model	Ω_m	Ω_{Λ}	h	b	$N_m^{\ a}$	N_p	$L(h^{-1}{ m Mpc})$	z_i	N_{step}	code
a) /	$\sim \Lambda \text{CDM}$	0.27	0.73	0.71	1.11	2048^{3}	2048^{3}	1024	17	680	PMTree
a)	^ ΛCDM	0.27	0.73	0.71	1.11	2048^{3}	2048^{3}	5632	17	170	PMTree
b) —	► ACDM	0.3	0.7	0.7	1.11	512^{3}	512^{3}	128	23	980	PMTree
	$\checkmark \Lambda \text{CDM}$	0.3	0.7	0.7	1.11	2048^{3}	1024^{3}	409.6	47	470	\mathbf{PM}
c) <	SCDM	1.00	0.00	0.5	1.5	2048^{3}	1024^{3}	1024	23	230	\mathbf{PM}
	SCDM	1.00	0.00	0.5	1.5	2048^{3}	1024^{3}	409.6	47	470	\mathbf{PM}

^aSize of mesh on which initial conditions are defined.

Dependence of Genus on ...

(Park, Kim & Gott 2005)

 Smoothing Scales
 R_G = 1.5 ~ 150 h⁻¹ Mpc
 2. Tracers
 Matter, Peaks in initial density field,
 Dark halos, HOD 'galaxies'
 3. Redshift space distortion
 4. Cosmogony : LCDM vs SCDM

Genus-Related Statistics

- Amplitude drop R_A
 - $\mathbf{R}_{\mathbf{A}} = \mathbf{A}_{\mathbf{obs}} / \mathbf{A}_{\mathbf{PS}}$
- Shift parameter _____
 By fitting G_{obs}(_) over -1<_<1
- Asymmetry parameters $A_V \& A_C$ $A = \int G_{obs}(\) d \] G_{fit}(\) d \]$ where intervals are -1.2, (A_V) , 1.2, 2.2, (A_C)

Dependence of genus on smoothing scale

Perturbation theory (Matsubara 2003)

 $S^{(2)} = -rac{9}{4} \left\langle (
abla \delta \cdot
abla \delta)
abla^2 \delta
ight
angle / \sigma_1^4 = rac{9}{4\sigma_1^4} \int rac{d^3k_1}{(2\pi)^3} rac{d^3k_2}{(2\pi)^3} \mathbf{k_1} \cdot \mathbf{k_2} k_{12}^2 B(k_1, k_2, k_{12})$

Dependence of genus on cosmogony

Dependence of genus on LSS tracers

Findings ...

(Park, Kim & Gott 2005)

Strong dependences on scale, time & tracers
 R_A freezes at z ~< 3 (insensitivity of amplitude of G to time)

3. Gravitation evolution makes A_v increase & Observed A_v< 1

 \rightarrow proper biasing mechanism needed

(4. Problem with HOD: $A_C \sim A_V$?)

Voids are not the places where there is nothing, but pl aces where history of the universe is better kept.

Sloan Digital Sky Survey

Imaging of North Galactic Cap 5m APO telescope with a mosaic CCD camera u, g, r, i, z photometric bandpasses → objects for spectroscopy

2. Spectroscopy

 $\sim 10^6$ galaxies & 10^5 quasars with rms z-error ~ 30 & 300 km/s

3. Samples

Main Galaxies: r_{Pet} < 17.77 → Recent Samples 14 & 15 (~DR3 & DR4) Quasars Luminous Red Galaxies (LRG): z<0.4 & >0.4 samples

Survey characteristics

TABLE 1

SDSS Equipment Summary

Parameter	Value	
	Telescope and Site: Apache Point Observatory	
Latitude and longitude Elevation Survey telescope Survey area Instruments Photometric telescope		
	Imaging Camera	4222 2220
Photometric CCDs CCD read noise Image frame size Image column separation Detector separation along column Focal-plane image scale Detector image scale Pixel size and scale Filters Integration time Operating mode Field distortion Field size Flux calibration Astrometric CCDs	30, 2048 × 2048, SITe/Tektronix, 49.2 mm square $<5 e^{-}$ pixel ⁻¹ (overall system is sky limited) 2048 × 1361 pixels (13'.52 × 8'.98) 25'.17 17'.98 3.616 mm arcmin ⁻¹ 3.636 mm arcmin ⁻¹ 24 µm; 0".396 pixel ⁻¹ <i>riuzg</i> scanned in that order, 71.7 s apart 54 s Time-delay and integrate (" drift scan ") <0".1 over entire field 2°5 Standard-star fields at 15° intervals along scans, tied to BD + 17°4708, atmospheric extinction determined by PT 22, 0.25 × 2 inches, above and below CCD columns; <i>r</i> filter plus 3 mag neutral density filter, 10.5 s integration time	
	Spectrographs	
Channels CCDs Coverage Number of fibers Fiber diameter Flux calibration Integration time Pixel size	One red, one blue for each spectrograph SITe/Tektronix (as for imager) 3800–6150 Å (blue), 5800–9200 Å (red), $\lambda/\Delta\lambda \approx 1800$ 320 × 2 3" Standard stars in each field, tied to colors observed with camera 45 minutes, in three exposures [nominal (S/N) ² > 15 pixel ⁻¹ at g* = 20.2] 69 km s ⁻¹	

Hg, Cd, and Ne arc lamps, rms error of 0.07 pixels (10 km s^{-1}) Quartz lamps

Wavelength calibration

Flat field.....

Minimize Galactic foreground extinction

Projection on the sky (Galactic coordinates) of the North ern and Southern SDSS surveys. The lines show the indi vidual stripes to be scanned by the imaging camera. The se are overlaid on the extinction contours of Schlegel, Fi nkbeiner and Davis (1998). The Survey pole is marked b y the `X' (Fig 2. York et al. 2000)

Both equatorial and galactic coordinates are plotted.

SDSS Sky Coverage

J134031.78+000022.7	J134444.62+001032.2	J135244.55+000749	J135326.26+000247.9	J135444.65+000654.4	H 43546 66 002246 4	11 4 27 4 2 92 004 957 7	H 42752 002242 7	1145246.06.004727	11 455 44 92 001 822 4
	Ø	S	.						
J135506.96+000455.7	J1 35508.79+000837.6	J135922.11+001223.8	J140137.99+000402.5	J140407.39+000838.4	J145545.77-002005.7	J150444.18-002107.1	J150825.75-001558.5	J150825.01-001607	J150815.28-001315.4
		•							10.
J140535.4+001105.9	J141302.55+000846.9	J141330+001109	J141452.57+001146.3	J141718.67+000540.4	J151055.76-001924.7	J151047.23-002053.9	J151137-001622.6	J151433.67-002328.8	J151623.09-001805.1
		1							
J141722.17+000125.3	J141835.45+000927.7	J142636.5+000230.9	J143019.7+000708.9	J143540.07+001217.7	J152024.55-001330.8	J152333.98-002345.3	J152544.88-001727.6	J152723.65-001507.6	J152800.82-002135.3
	1	1							:
J144329.47+001213.9	J144403.49+031939	J144418.52+000238.6	J145052.59+000540.2	J145123.41+000025.4	J152912.73-001507.9	J152937.63-001650.5	J153023.84-002020.2	J153027.87-001349.6	J153045.15-002211.5

Horizon of human knowledge is expanding SDSS V~ 10² CfA V ~ 1/5000 Horizon V Italy A ~ 1/1700 Earth Surface

2005 SDSS

Sample Definition for Genus Analysis

BEST Sample -20.15 < Mr <-21.53 162.9 < r < 319.0 h⁻¹Mpc 0.0550 < z < 0.1091 36,000 galaxies d = $6.14 h^{-1}Mpc$

3D Vie w of S DSS

3D Vie w of a mock SDSS

> HOD galaxy for mation prescript ion

SDSS Sample 14: Genus Analysis

(Park, Choi, Vogeley, Gott, Kim, Suto, et al. 2005)

Scale dependence

 gR_G^3 – genus density per smoothing volume •f· \dot{I} Shift $A_C & A_V$ – clusters & voids multiplicity Shaded area – 1 σ limits from 100 Mock surveys

- Strong evidence for biased gala xy formation in low density envir onments (Av <1)
- Effects of the Sloan Great Wall

Luminosity dependence

On going works

(Choi, Gott, Kim, Park, Suto, Vogeley, Yahata 2005)

- **1. Color & Morphology Dependence**
- 2. R_A parameter
- 3. LRG, quasars, clusters
- 4. Comparison with Cosmological & galaxy form ation models
- 5. Minkowski functionals

(Vogeley, Choi, Park, et al. 2005)

Dependence o n Morphology of Galaxies

Existing Morphology Classifier

- 1. Structure Parameter : Sersic index n,
 - concentration index C, profile likelihoods
- 2. Star formation : u-r color,

emission/absorption lines, PCA of spectra

Automated Morphology Classifier

- **Three Parameter Classification**
- **1. Star formation history : u-r color**
- 2. Structure +Star formation : color gradient °(g-i)
- **3. Structure Parameter : Sersic index n**

200 RC3 galaxies wi th m_{pg}<13.2

(Park, Choi, Vogeley 2005)

Different Tracers of Structure Formation: Galaxy, Cluster, Group, Void, Quasar, etc.

