Studying Galaxy Clusters with Hydrodynamical Simulations

Stefano Borgani Department of Astronomy Interdept. Centre for Computational Sciences University of Trieste

- (a) Amplification of the ICM entropy and the nature of energy feedback.
- (b) Simulating the chemical enrichment of the ICM (see also poster by L. Tornatore).
- (c) Controlling the effects of numerics and physics (see also talk by K. Dolag).

Talk @ Computational Cosmology, Trieste, May 31th – June 4th 2005

Looking deep into the ICM with CHANDRA

Fornax cluster: mosaic of 10 exposures of 50 ks with ACIS-I Scharf et al. 2004 (100 pc resolved structures)

Perseus cluster: 200 ks ACIS-S3 exposure Fabian et al. 2003 (120 kpc a side)

The puzzle of the cluster cool cores

Pre-Chandra/XMM: High Mass-Deposition Rates: few $10^2 M_{\odot}$ /yr

Spectroscopic MDR: few 10 M_{\odot} /yr

No gas detected with T<(0.3-0.5) T_{vir}

How to prevent this gas from cooling?

Petersen et al. 2001 XMM-Newton spectra

Self-similar ICM: gravity only at work (Kaiser 1986)

Critical density: $\tilde{n}_c(z) \propto \tilde{n}_c(0)E^2(z)$ $E(z) = [\dot{U}_{m} (1+z)^{3} + (1-\dot{U}_{m} - \dot{U}_{\ddot{E}})(1+z)^{2} + \dot{U}_{\ddot{E}}]^{1/2}$ Cluster mass: $M_{\ddot{A}} \propto \tilde{n}_{c}(z)\ddot{A}_{c}R^{3}$ At fixed Δ_{c} : $R \propto M^{1/3}E^{-2/3}(z)$ **The M-T relation:** hydrostatic equilibrium $\Rightarrow T \propto M^{2/3} E(z)^{-2/3}$ <u>The L_x-T relation:</u> $L_X \propto \int n_e n_H \Lambda(T) dV \propto T^2 E(z)$ for $\Lambda(T) \propto T^{1/2}$ **Gas entropy:** $S = \frac{T}{12/3} \propto TE^{-4/3}(z)$ Thermodynamical def.: $s = c_V \ln (P/\rho^{\gamma})$ $\gamma = 5/3$ $P = R\rho T \implies S = e^{(s/c_V)}/R$

<u>Self-similar ICM:</u> gravity only at work (Kaiser 1986)

 $\frac{\text{Hydrostatic eq.}}{T(M,z)} \propto M^{2/3} E(z)^{2/3}$ $\frac{\text{Bremss emiss.:}}{L_{X}} \propto M\rho T^{1/2}$

 $S \propto (T/\rho_g^{2/3})$ $\propto T E(z)^{-4/3}$

$$S = e^{(s/c_V)}/R$$

$$y_0 \propto T^{3/2} E(z)$$

PART I: Entropy amplification from feedback SB, Finoguenov, Kay, Ponman, Springel, Tozzi & Voit 2005

Entropy amplification by diffuse accretion (Voit et al. '03; Ponman et al. '03)

X-ray def: S=T/n_e^{2/3}

Expected: S ∝ T

Observed: S ∝ T^{2/3}

• Groups accrete from smaller halos relative to clusters.

⇒ With pre-heating, gas clumps accreting in groups are more efficiently diffused wrt those accreting into clusters.

 \Rightarrow Transition from clumpy to diffuse accretion.

 \Rightarrow More efficient entropy generation at the shocks.

The simulation code

Tree + SPH GADGET2 (Springel et al .'01; Springel '05) www.MPA-Garching.MPG.DE/gadget

- Explicit entropy conservation (Springel & Hernquist '02)
- Radiative cooling + uniform evolving UV background
- Multiphase model for self-regulated star-formation
- Phenomenological model for galactic winds (Springel & Hernquist '03)
- Chemical enrichment from Sn-Ia and II (Tornatore et al. '04, '05)
- Reduced-viscosity SPH scheme (Dolag et al. '05, in prep.)

$$v_{\rm w} = \sqrt{rac{2eta\chi u_{
m SN}}{\eta(1-eta)}}$$

....

β: fraction of mass in stars >8M_☉ (Salpeter IMF) χ : SN energy fraction powering winds (=0.5-1) η: amount of gas in wind, units of dM_{*} (=2) ⇒ V_w ≈ (300-500) km s⁻¹

Entropy amplification from feedback - II

1 Cluster: M_{vir} = 2.6 10¹⁴ h⁻¹ M_{\odot} 3 Groups: M_{vir} = (1.6-4.2) 10¹³ h⁻¹ M_{\odot}

- Galactic winds from SN energy feedback
- Preheating by entropy floor at $z_h=3$

Run	S_{fl}	v_w	E_h	$ ho_{ m dec}$	$d_{\rm dec}$	f_*
Non-rad. runs						
GH						
S25	25		0.5			
S100	100		2.2			
Rad. runs						
W1		341	0.3	0.5	10	0.19
W2		484	0.5	0.5	10	0.17
W3		837	1.2	0.5	10	0.13
W4		837	1.1	0.01	50	0.12
W1+S25	25	341	$0.2{+}0.4^{\dagger}$	0.5	10	0.15
W1+S100	100	341	$0.2 + 1.8^{\dagger}$	0.5	10	0.14
Rad. runs W1 W2 W3 W4 W1+S25 W1+S100	$25 \\ 100$	341 484 837 837 341 341	$\begin{array}{c} 0.3 \\ 0.5 \\ 1.2 \\ 1.1 \\ 0.2{+}0.4^{\dagger} \\ 0.2{+}1.8^{\dagger} \end{array}$	$\begin{array}{c} 0.5 \\ 0.5 \\ 0.5 \\ 0.01 \\ 0.5 \\ 0.5 \\ 0.5 \end{array}$	10 10 10 50 10 10	$0.19 \\ 0.17 \\ 0.13 \\ 0.12 \\ 0.15 \\ 0.14$

Entropy amplification from feedback - III

⇒ Large amplification in the non-radiative runs.
⇒ In Group-3 more efficient than in the Cluster.
⇒ Much reduced in the radiative runs.
⇒ Strong winds only effective in the Group-3

Entropy amplification from feedback - IV

S< 60 kev cm²

S< 400 kev cm²

Entropy amplification from feedback - V

 ⇒ Even strong winds
 don't break self-similarity
 in the halo outskirts
 (although effective in regulating star formation)

⇒ Entropy amplification requires a quite diffuse feedback heating (i.e. not localized around SF regions).

Part II. Following the chemical enrichment of the ICM Tornatore et al. '04, '05 (collab. K. Dolag, F. Matteucci, C. Chiappini)

See posters by Scannapieco et al. and Kobayashi et al.

Implementation in the SF/feedback model by Springel & Hernquist (2003)

(a) Avoid IRA: Fe contributed by long-lived stars

- (b) SSP for each star particle. Ingredients:
 - ⇒ Initial mass function
 - ⇒ Stellar lifetimes as a function of star mass
 - ⇒ Stellar yields

Compute N_{SNIa} , N_{SNII} and N_{PNe} at each time step Δt : SNII: stars with M>8M_o

SNIa: binary systems with $M=(0.8-8)M_{\odot}$ for each component PNe: stars with $M=(0.8-8)M_{\odot}$ not turning into SNIa

(c) Modify the effective model by SH03 to account for:
 i) extra energy source from stars outside the IRA;
 ii) metallicity-dependent cooling function

(d) Metal diffusion: spreading over neighbors using an SPH kernel

Model parameters:

(a) IMF: $\phi(m) \sim m^{-(1+x)}$ x=1.35: Salpeter IMF

x=0.95: top-heavy (Arimoto-Yoshii) IMF

(b) Stellar lifetimes: Padovani & Matteucci '93

Maeder& Meynet '89

(c) Fraction of binary stars, providing SN-Ia: bf=0.07-1

(d) Velocity of galactic winds: $v_w = 500 \text{ km s}^{-1}$ (normal winds)

 v_w =1000 km s⁻¹ (strong winds; AY IMF only)

Simulated clusters (as of today):

- **1.** Rich cluster: $M_{vir} = 1.0 \times 10^{15} h^{-1} M_{sun}$ (three more to be done)
- **2.** Poor cluster: M_{vir} =1.0 x 10¹⁴ h⁻¹ M_{sun} (four more to be done)

Iron [0.01-0.5] Fe _o

Oxygen [0.01-0.1] O $_{\odot}$

Salpeter IMF

 Z_{Fe} larger for the smaller cluster (similar trend as in observations)
 Too low Z_{Si} for the massive cluster.

 No change in Z_{Si} by increasing the fraction of binary stars (Si not produced by SN-Ia)

Changing the IMF

- Z_{si} larger for a top-heavier IMF
- Z_{Fe} lower for strong winds due to the suppression of star formation (f*=0.12 vs. f*=0.22)

Abundance profiles

Data: De Grandi et al. '03

Salpeter IMF

- Fraction of binaries has a sizeable effect on [O/Fe]
- Profiles of Z_{Fe} steeper than observed!
- ⇒ Lack of metal diffusion (by turbulence?)
- ⇒ Higher resolution to better treat the stripping of metal-enriched gas in galactic halos?

Star-formation rates

- SFR peaking at z=2-3
- Changing the IMF at constant wind velocity: marginal effect.
- Increasing the wind speed:
 - a. suppress the SFR peak
 - b. make SFR flat at z=1.5-3
- SN-II nearly follow the SFR
- SN-la rate much flatter to low z
- ⇒ Important to correctly follow the lifetimes!
- a. Iron produced down to low z
- b. Oxygen almost unchanged since z=1

Gas-related profiles

Entropy profiles:

flatter due to the more efficient cooling of metal-enriched gas.

Exception: stronger feedback preventing a population of low-S gas from cooling out of the hot phase.

 \Rightarrow IMF dominant in determining the pattern of chemical enrichment.

⇒ Feedback strength dominant in determining the ICM thermodynamics.

PART III: controlling numerics and physics

Maps of gas density

Cl-1 1.4e15 M_{\odot} /h $m_g=7e7 M_{\odot}$ /h $\epsilon_{Pl}=3.2 \text{ kpc/h}$

Cl-3 2.7e14 M_{\odot} /h $m_g=1.5e7 M_{\odot}$ /h $\epsilon_{Pl}=2.1 \text{ kpc/h}$

Cl-2 2.9e14 M_{\odot} /h $m_g=1.5e7 M_{\odot}$ /h $\epsilon_{Pl}=2.1 \text{ kpc/h}$

CI-4 1.6e14 M_{\odot} /h $m_g=1.5e7 M_{\odot}$ /h $\epsilon_{Pl}=2.1 \text{ kpc/h}$

Preventing the cooling catastrophe with feedback SB, Dolag, Murante, Cheng et al. '05

Star fraction vs. resolution

- Feedback with galactic winds prevents the cooling runaway.
- f* even decreasing at the highest resolution.

Effect of pre-heating: earlier winds from smaller halos forming at higher redshift.

Getting closer to the observed f*... Also, what about diffuse light?

The star-formation history

m_{gas}=m_{DM}

- Winds suppress SF at z<7.
- Stronger SF at large redshift for higher resolution
- \Rightarrow Quite expected...
- Lower f* at high res. due to suppression of SF at z<2</p>

T, S & ρ_{gas} profiles

Effect of increasing resolution:

- Improved description of the gas cooling structure
- ⇒ Steepening of the central Tprofiles.
- Higher central entropy (R<0.1 R_{vir}) from more efficient highredshift feedback.
- Excellent convergence of the outer (R>0.1R_{vir}) profiles
- ⇒ Isothermal profiles from data would be a nightmare for simulations.....

Controlling numerical heating SB, Dolag, Murante et al. in prep

Looking for an optimal softening?

 $\epsilon \propto m_{gas}^{1/3}$

Star formation suppressed by:

 too small softening:numerical gas heating (Thomas & Couchman '93).

 too large softening: unresolved halos.

Number of resolved galaxies:

always decreasing with softening

⇒ Compromise between f_* and n_{gal} .

Grid vs. Glass ICs

Glass ICs (White 1994):

 Unperturbed particle positions define an amorphous (glass-like) configuration.

• Obtained by evolving a random particle distribution with negative gravity.

Almost negligible effect on SFR and gas-related profiles

CONCLUSIONS

- (a) Entropy amplification in cluster outskirts: not easy to obtain. ⇒ ICM entropy as diagnostic for the high-z feedback. (b) Chemical enrichment of the ICM: b.1 Global metal content and relative abundances reproduced by suitable choices of the IMF. b.2 Profiles of Z_{Fe} steeper than observed: Lack of diffusion? (c) Feedback quite effective in regulating SF and preventing cooling catastrophy: **Problem:** Temperature profiles always too steep in central regions! **Solution:** The same as for the cooling-flow problem (AGN? See poster by D. Sijacki).
 - Find a robust way to include observational biases (see poster by E. Rasia)

Checking for mass segregation

Generate stars with masses differing by a factor 10

No significant difference in the distributions of the 2 star populations

• Virtually identical profiles \Rightarrow Good news for the ICL study in simulations!