THE LYMAN-α FOREST AS A COSMOLOGICAL PROBE

MATTEO VIEL

- OBSERVATIONS

LUQAS: The observational sample High-resolution spectra vs. Low resolution

THEORY

Hydro-dynamical simulations of the Lyman- α forest Full hydro simulations vs. HPM simulations

- RESULTS

Cosmological parameters – Implications for gravitinos, neutrinos and WDM

With M. Haehnelt, J. Lesgourgues, S. Matarrese, A. Riotto, V. Springel, J. Weller

'Computational Cosmology' - ICTP, Trieste, 3 June 2005

SDSS vs LUQAS

LOW RESOLUTION LOW S/N

HIGH RESOLUTION HIGH S/N

The LUQAS sample

 $\Omega_{\rm m}$ = 0.26 Ω_{Λ} = 0.74 $\Omega_{\rm b}$ =0.0463 H $_{\rm 0}$ = 72 km/sec/Mpc - 60 Mpc/h 2x400 $^{\rm 3}$ GAS+DM 2.5 com. kpc/h softening length

GADGET –II code COSMOS computer – DAMTP (Cambridge)

GAS

STARS

DM

NEUTRAL HYDROGEN

Effective bias method (Croft et al.2002)

for critical discussion see Gnedin & Hamilton 2002 and Zaldarriaga Scoccimarro Hui 2003

Main drawbacks: it misses dependence on some cosmological parameters mode coupling is expected linearity of lyman-α structures

RESULTS

Cosmological implications: combining the forest data with

WMARehnelt, Springel, MNRAS, 2004, 354, 684

Cosmological implications: Warm Dark Matter particles-I

In general
k FS ~ 5 Tv/Tx (m x/1keV) Mpc⁻¹

if light gravitinos

 $k FS \sim 1.5 (m \times 100eV) h/Mpc$

Set by relativistic degrees of freedom at decoupling

Cosmological implications: WDM, gravitinos, neutrinos

	ΛW DM	Λ CWDM
$\Omega_x h^2$	0.124 ± 0.015	0.149 ± 0.019
$\Omega_{ m B} h^2$	$\textbf{0.024} \pm \textbf{0.001}$	0.024 ± 0.001
h	0.72 ± 0.06	0.71 ± 0.06
au	0.18 ± 0.09	0.17 ± 0.08
σ_8	0.96 ± 0.08	0.86 ± 0.09
n	1.01 ± 0.04	1.00 ± 0.04
$\alpha \; (\mathrm{Mpc}/h)$	0.06 ± 0.03	
f_x		0.05 ± 0.04

Set limits on the scale of Supersymmetry breaking

$$\Lambda_{\text{susy}}$$
 < 260 TeV

SYSTEMATICS

Hydro-simulations: systematics effects

$$T = T_0 (1 + \delta)^{\gamma - 1}$$

Different equation of state

Different γ

Hydro-simulations: what have we learnt?

Many uncertainties which contribute more or less equally (statistical error seems not to be an issue!)

ERRORS

CONTRIBUTION TO FLUCT. AMPL.

Statistical error	4%
Systematic errors	~ 15 %
$\tau_{\rm eff}$ (z=2.125)=0.17 ± 0.02	8 %
$\tau_{\rm eff}$ (z=2.72) = 0.305 ± 0.030	7 %
$\gamma = 1.3 \pm 0.3$	4 %
T ₀ = 15000 ± 10000 K	3 %
Method	5 %
Numerical simulations	8 %
Further uncertainties	5 %

HPM simulations of the forest

MV, Haehnelt, Springel, astro-ph/0504641

Fitting the SDSS flux power spectrum with full hydro simulatio

SUMMARY

1. LUQAS: a unique high resolution view on the Universe at z=2.1

- 2. Hydro-dynamical simulations of the Lyman- α forest. Systematic Errors? Differences between hydro codes?
- 3. Cosmological parameters: no fancy things going on $\sigma_8 = 0.93$ n = 1 no running substantial agreement between SDSS and LUQAS but SDSS h smaller error bars (factor \sim 2), due to the different theoretical modelling and wider range of redshift probed by SD Constraints on inflationary models, neutrinos and WDM can be obtained