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1 — Introduction

Done in collaboration with Andrew Liddle (Sussex), Juan Garcia-Bellido and Maria
Beltran (Madrid)

Work in progress

Bayesian parameter estimation is a well established procedure with MCMC as a

standard method

Parameter estimation will “estimate” parameters, regardless of whether the model is

appropriate or not.

Bayesian model comparison allow one to compare models. It picks the most suitable
model based on

— ability to fit the data

— complexity



2 — Introduction

e Basic quantity that describes the relative probability of a model is Evidence:
— It is a Bayesian equivalent of X2
— Occam'’s razor built in

— integral of likelihood over the prior:

E:/L@M&M% 1)



3 — Example

Isocurvature models (astro-ph/0501477):

Parameter Prior Range Model
Wh (0.018,0.032) AD-HZ,AD-n5,ISO
Wdm (0.04,0.16) AD-HZ,AD-ng,I1SO
0 (0.98,1.10) AD-HZ,AD-ng,ISO
T (0,0.5) AD-HZ,AD-ng,I1SO
In[1019R ; 4d] (2.6,4.2) AD-HZ,AD-n,ISO
s (0.8,1.2) AD-n,ISO
Niso (0,3) ISO
dcor (—0.14,0.4) 1ISO
Va (—1,1) 1ISO
15, (—1,1) ISO

Model In(Evidence)
AD-HZ 0.0 £ 0.1
AD-nyg 0.0 0.1
CDI —1.0£0.2
NID —1.0£0.2
NIV —1.0£0.3




4 — Thermodynamic integration

The iso-curvature paper was a proof of concept

The Evidence was calculated by the thermodynamic integration:

1
E = /O dA (log L) (2)

Computationally extremely inefficient: 10° samples required for reasonable accuracy

Method “learns” about the extend of the prior by seeing how samples behave at low
lambda: clearly inefficient.

Naive approaches don’t work:

— random sampling never hits high L region

— average of burned-in samples L is evidence if prior=posterior (bad!)



5 — Thermodynamic integration

We attempted several methods to get evidence, or an approximation of evidence from

burned-in samples alone:

e \Would put evidence calculation into mainstream allowing people to reuse parameter

estimation chains
e Must put in prior width by hand (good!)
e (Gaussian approximation + expansion

e Savage - Dickey approach



6 — Gaussian + perturbative expansion

e Approximate posterior by a Gaussian and calculate evidence.

e Allows one to add Skewnes, Kurtosis and higher moments to improve fit.



/7 — Gaussian - example

e A non-gaussian function made by

summing two Gaussians

e Approximate by Gaussian with the

same mean / covariance

e Add skewness and kurtosis correc-

tions
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10 — Gaussian - example
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11 — Gaussian - example

e \Works extremely well
e Evidence the same to better that 1%

e Leading error comes from overall

normalisation of the fitting function




log E

12 — Speed of convergence
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13 — In practice

In principle it should be easy:
— Calculate means, Covariances and higher order matrices if necessary

— Plug them into equation and voila
Turns to be fairly difficult thing to do accurately

Expanding around mean gives different results that expanding around most likely

point
Inherently prone to systematics if prior small
Problem with overall normalisation

Gives imaginary evidence occasionally (yuck!)



14 — Preliminary results

6-param flat basic NID isocurvature

model model (10 param)

Thermodynamic integration -855.1 -856.1

Gaussian expansion around mean -855.5 -853.6

+Skew+Kurtosis expansion around mean -854.5 -855.1

+fitting likelihood normalisation -856.5 -857.5

Gaussian expansion around MaxLike -854.2 -850.6
+Skew+Kurtosis expansion around MaxLike -855.6 X
+fitting likelihood normalisation -856.6 X

Works fine for basic model but not for iIsocurvature models



15 — Direct fitting of the likelihood function

Do not infer the covariance matrix, etc. from moments, but rather fit directly.
Much more stable and efficient (compared 1d Gaussian)

No ambiguities wrt to where from to expand, normalise, etc.

We minimise Y- (10g Lincory — 108 Lsampie )

Becomes difficult problem again:
— 126 numbers to fit for a 6d problem
— 626 numbers to fit for a 10d problem

— need a supercomputer, but much faster than taking 106 samples

Can actually estimate a typical error of the fitting function



16 — Gaussian Fitting Results

6-param flat basic NID isocurvature

model model (10 param)
Thermodynamic integration -855.1 -856.1
Gaussian expansion -854.2 -847.5
rms error in log L 0.81 5.4
+Skew+Kurtosis -855.6
rms error in log L 0.6

Again, works fine for basic model but does not seem to converge to the correct minimum
for NID.



17 — Savage - Dickey Method

e Recently advocated by R. Trotta (astro-ph/0504022).

e \Works for nested models (for example flat models are nested in more general

variable €2, models).
e No assumption about the shape of likelihood

e Essentially:

# of samples in a model
F i (3)

prior volume




18 — S-D In practice

e NID has 4 more parameters: &, (3, Niso, Ocross-

NID vs basic model:

e o = ( corresponds to purely adiabatic modes: (3, g0, Ocross UNconstrained as they

do not affect likelihood.

e Adding an unconstrained parameter to a model doesn’t change its evidence.

e o = () is thus a nested adiabatic model



19 — S-D In practice

Real sampling never hits « = 0. So we approximate the adiabatic model by o < €.
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20 — How to choose €

e \Want to hit the plateau at small ¢
e o < € must be a good approximationto v = 0

e Compare first and second moments of distributions from o < €/2 and
€/2 < a<e
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21 — S-D results

e Dominating source of uncertainty is sampling error - calculate error from scatter from

different chains
o AF ig_aqg =—19+0.15

e Inconsistent with thermodynamic results of —1.0 4= 0.2 (but issues wrt to Gaussian

errors)

e \ery fast!



22 — Conclusions

e Can do model comparison, but computationally extremely expensive

e At the moment no-one is doing it regularly, but given the right tools, people would

use it (?!)

e We are developing these methods: not quite there, but close.
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