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The two distributions have about the same Power Spectrum!



Galaxy Bias and HOD’s from Large-Scale Correlations
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At large scales the relationship between galaxies and dark matter can be 
approximated by,

One can use higher-order correlation functions to determine the bias 
parameters. The three-point function (bispectrum) can be estimated by,

When suitably normalized, it depends only on galaxy bias, 



and on spectral index, 
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Similarly, for the four-point function (trispectrum), one can calculate an analogous 
quantity,

This is actually an average over the full trispectrum, which depends on 6 
variables, but it is easy to calculate. The dependence on bias parameters is similar 
to the bispectrum case,



k1 = k2 = k3 = k4 = 0.25 h/Mpc

k1 · k2 = k3 · k4 = cos(2φ)





SDSS geometry
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Signal to Noise: Bispectrum and Trispectrum vs. Power Spectrum
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How well can we measure the bias parameters?
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Constraints expected from bispectrum alone, 

Constraints from bispectrum plus trispectrum, 

In addition to significantly improving error bars, and constraining and additional 
parameter, one can do analysis of trispectrum alone and check for consistency 
with the bispectrum analysis. 

The constraints on linear bias translate into constraints on sigma8 and Omega 
matter when combined with the measurement of the power spectrum.  Also 
measurements of higher-order statistics improve constraints on spectral index.

What do we learn from the constraints on the nonlinear bias parameters?



in general, the large-scale bias parameters are

From the point of view of large-scale clustering, the important thing is that the 
halo model gives a precise relation between bias parameters and mean 
occupation of galaxies as a function of halo mass. Since the other ingredients are 
well-known from theory, one can hope to constrain <Ngal(m)> by measuring 
large-scale clustering alone.

In the halo model, the mean of the HOD determines the mean galaxy density, 
and the large-scale bias parameters,
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See Sefusatti’s poster



Cosmological Parameters from 
Joint Analysis of Power Spectrum and Bispectrum

- Measuring the galaxy bias allows us to break the degeneracy between bias and 
sigma8 present in the power spectrum

- The bispectrum measures mode-mode coupling and its strength is sensitive to 
the shape of the power spectrum, then we can hope to improve constraints on 
e.g. the primordial spectral index.

Let’s consider a joint analysis of P+B and look at constraints on bias, sigma8 and 
ns, for fixed Omega_b, Omega_m and h in the case of the final SDSS geometry.



Marginalizing over the 3 remaining parameters in turn, 

Includes Full P+B 
covariance matrix from 
6000 SDSS mocks catalogs



A New Approach to Gravitational Clustering

- In standard perturbation theory (PT), one expands in the amplitude of density 
perturbations.

- This is well justified when looking for asymptotic behavior at large-scales, 
where fluctuations become small. 

- How about nonlinear corrections to these results? Once these become 
important, one may need to sum up all orders in PT to obtain meaningful results.

For the power spectrum, taking into account the first corrections to the linear 
spectrum works well for steep spectra but not so well for CDM at z=0,
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- In RPT, one looks at the infinite series of diagrams in PT and sees how they 
organize themselves into a few characteristic physical quantities, the most 
important of which is the propagator

Renormalized Perturbation Theory (RPT)
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The propagator is a measure of the memory of initial conditions, and reduces to 
the usual growth factors in linear theory,

where

The rest of the diagrams can be thought of as the effects of mode-coupling.

Gab(k, η) δD(k − k
′) ≡

〈δΨa(k, η)

δφb(k′)

〉
c

Final density / velocity div.

Initial Conditions

←−

←−



P (k) =

∫
d3r

(2π)3
eik·r

[
e−[k2σ2

v
−I(k,r)]

− 1
]
,

I(k, r) ≡

∫
d3q

(k · q)2

q2
cos(q · r)PL(q), σ2

v =
I(k, 0)

k2

To illustrate these ideas, let’s look at the Zel’dovich approximation nonlinear 
power spectrum, in this dynamics the exact (non-perturbative) result is known,

where,

Let’s now expand this result in powers of the linear spectrum, to recover the 
standard PT expansion,
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ZA Nonlinear Power Spectrum in standard PT expansion

dashed lines correspond 
to negative contributions

Different orders 
become 

comparable in the 
nonlinear regime
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Now, it can be shown that in RPT the resummation of the propagator leads to 
the first exponential factor in the exact result

And the RPT expansion correspond to expanding only the mode coupling terms,
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Here the n=1 term gives the linear spectrum times the propagator resummation 
factor (no mode-coupling, unlike the rest of the terms)



ZA Nonlinear Power Spectrum in RPT expansion

Different orders 
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In the exact dynamics the resummation of the propagator can be calculated 
(much more difficult than in ZA but can be done), see Crocce’s poster

The real test of this method will be the calculation of the nonlinear power 
spectrum, which we are doing now. Stay tuned!


