

International Atom Energy Agency

SMR.1661 - 5

Conference on

VORTEX RINGS AND FILAMENTS IN CLASSICAL AND QUANTUM SYSTEMS

6 - 8 June 2005

Knotted Vortex Rings from the Eikonal Equations

A. Wereszczynski Jagellonian University, Poland

Eikonal Equation and Eikonal Knots	
Dynamical Models for Eikonal Knots	
Application: Approximated Solutions of the FN Model	
Generalized Eikonal Knots	
Summary and Perspectives	

Knotted vortex rings from the eikonal equation

Andrzej Wereszczyński

Institute of Physics, Jagiellonian University Kraków, Poland

13th June 2005

• •

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

1 Eikonal Equation and Eikonal Knots

- 2 Dynamical Models for Eikonal Knots
- 3 Application: Approximated Solutions of the FN Model
- Generalized Eikonal Knots
- 5 Summary and Perspectives

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

• Equation

$$\partial_{\mu} u \partial^{\mu} u = 0$$

• Topology

$$\vec{n} = \frac{1}{1+|u|^2}(u+u^*,-i(u-u^*),|u|^2-1)$$

 \circ Topological charge \rightarrow Hopf index $Q_H \in \pi_3(S^2) \rightarrow$ knots

if
$$\lim_{|\vec{x}|\to\infty} \vec{n} = \vec{n}_0$$
 then $\vec{n} : R^3 \cup \{\infty\} \to S^2$

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

$$\circ$$
 Topological charge $\rightarrow Q \in \pi_2(S^2) \rightarrow$ hedgehogs

if
$$\lim_{|\vec{x}|\to\infty} \vec{n} \neq \vec{n}_0$$
 then $\vec{n}: R^3_\infty \simeq S^2 \to S^2$

 \circ Topological charge $ightarrow Q \in \pi_2(S^2)
ightarrow$ braided strings

< □ ▶

→ □ → → 目 → → 目 → □ 目

• Toroidal coordinates

$$x = \frac{\tilde{a}}{q} \sinh \eta \cos \phi$$
$$y = \frac{\tilde{a}}{q} \sinh \eta \sin \phi$$
$$z = \frac{\tilde{a}}{q} \sin \xi$$

where $q = \cosh \eta - \cos \xi$ and $\tilde{a} > 0$

then

$$\frac{q^2}{\tilde{a}^2}\left[(\partial_{\eta} u)^2 + (\partial_{\xi} u)^2 + \frac{1}{\sinh^2 \eta}(\partial_{\phi} u)^2\right] = 0$$

▲□▶▲母▶▲目▶▲目▶ 目 のへぐ

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

• Ansatz

$$u = f(\eta)e^{i(m\xi + n\phi)}$$

where $m, n \in \mathcal{N}$

$$f' = \pm \sqrt{\left(m^2 + \frac{n^2}{\sinh^2 \eta}\right)}f$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣

うくで

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

 \bullet Basic solutions \rightarrow unknots

$$f^{\pm} = A \sinh^{\pm |n|} \eta \frac{\left(|m| \cosh \eta + \sqrt{n^2 + m^2 \sinh^2 \eta}\right)^{\pm |m|}}{\left(|n| \cosh \eta + \sqrt{n^2 + m^2 \sinh^2 \eta}\right)^{\pm |n|}}$$

thus

$$u = A \sinh^{\pm|n|} \eta \frac{\left(|m| \cosh \eta + \sqrt{n^2 + m^2 \sinh^2 \eta}\right)^{\pm|m|}}{\left(|n| \cosh \eta + \sqrt{n^2 + m^2 \sinh^2 \eta}\right)^{\pm|n|}} e^{i(m\xi + n\phi)}$$

• Hopf index

$$Q_H = -nm$$

<ロト < 回 > < 回 > < 回 > < 回 > <</p>

-21

~) Q (~

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

• Position of the core of knots

$$\vec{n}_0 = -\vec{n}^\infty$$
 where $\vec{n}^\infty = \lim_{\vec{x} \to \infty} \vec{n} = \lim_{\eta \to 0} \vec{n}$

here

$$\lim_{\eta\to 0} f^{(-)}(\eta) = \infty \quad \Rightarrow \quad \vec{n}^{\infty} = (0,0,1) \quad \Rightarrow \quad \vec{n}_0 = (0,0,-1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Eikonal Equation and Eikonal Knots Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Summary and Perspectives

• Symmetry

 $u \rightarrow F(u),$

where F is any (anti)holomorphic function

 \circ Knotted solutions

 $u \rightarrow u + c_0$, m, n rel. prime numbers

Position of the knot

$$f(\eta_0) = |c_0|, \quad m\xi + n\phi = \pi - \alpha_0$$

< □ ▶

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

-1

unknot (m, n) = (1, 1)

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへで

knots (1, 2), (1, 3), (1, 4) and (1, 5)

▲□▶▲□▶▲□▶▲□▶ ▲□ シタの

knots (2,1), (3,1), (4,1) and (5,1)

・ 日 ト ・ 画 ト ・ 画 ト ・ 画 ・ 今 今 今

Andrzej Wereszczyński Knotted vortex rings from the eikonal equation

knots (2,3), (3,2), (2,5) and (3,4)

・ 日 ト ・ 画 ト ・ 画 ト ・ 画 ・ 今 今 今

 \circ Linked knotted solutions

$$u \to u^N + c_0, \ N \in \mathcal{N}$$

Position of the knots

$$f(\eta_0) = |c_0|, \quad m\xi + n\phi = \frac{1}{N}(\pi - \alpha_0 + 2\pi k), \quad k = 0, 1...N - 1$$

N elementary knots total topological charge thus

$$Q_e = -mn$$

 $Q_H = -N^2mn$

(二)、(四)、(三)、(三)、

Э.

$$\mathcal{Q}_{H} = \mathcal{N} \cdot \mathcal{Q}_{e} - \mathcal{L}, \hspace{1em} \mathcal{L} \hspace{1em} \mathsf{linking} \hspace{1em} \mathsf{number}$$

knots (1, 1), (2, 2), (3, 3) and (4, 4)

・ 日 ト ・ 画 ト ・ 画 ト ・ 画 ・ 今 今 今

knots (2,4) and (4,2)

▲□▶▲□▶▲□▶▲□▶ ▲□ シタの

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

 \circ Other knotted solutions

$$u \rightarrow u^{N_1} + u^{N_2}, \quad N_1 > N_2$$

Position of the knots

$$\eta_0 = \infty$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ ○

Eikonal Equation and Eikonal Knots
Dynamical Models for Eikonal Knots
Application: Approximated Solutions of the FN Model
Generalized Eikonal Knots
Summary and Perspectives

knots (1,1)
$$N_1 = 2, N_2 = 1$$
 and $N_1 = 3, N_2 = 1$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

knots (1,2),
$$N_1 = 2, N_2 = 1$$

knots (1,3), $N_1 = 2, N_2 = 1$

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

knots (2, 1),
$$N_1 = 2, N_2 = 1$$

knots (2, 3), $N_1 = 2, N_2 = 1$

▲□▶▲□▶▲□▶▲□▶ ▲□ ◆ ◆

Eikonal Equation and Eikonal Knots	
Dynamical Models for Eikonal Knots	
Application: Approximated Solutions of the FN Model	
Generalized Eikonal Knots	
Summary and Perspectives	

• Nicole Model

$$L = \frac{1}{2} (\partial_{\mu} \vec{n} \partial^{\mu} \vec{n})^{\frac{3}{2}} \quad \rightarrow \quad L = \frac{1}{(1+|u|^2)^3} (\partial_{\mu} u \partial^{\mu} u^*)^{\frac{3}{2}}$$

Equation of motion

$$\frac{1}{2}\partial_{\mu}\left[\frac{1}{1+|u|^{2}}(\partial_{\nu}u\partial^{\nu}u^{*})^{\frac{1}{2}}\partial^{\mu}u\right] - \frac{u^{*}}{(1+|u|^{2})^{2}}(\partial_{\nu}u\partial^{\nu}u^{*})^{\frac{1}{2}}(\partial_{\mu}u)^{2} = 0$$

solution

$$u = rac{1}{\sinh\eta} e^{i(\xi+\phi)}$$
 with $Q_H = -1$

<ロト < 団ト < 巨ト < 巨ト <</p>

5900

÷.

• Nicole-type Models

$$L = \frac{1}{2}\sigma(\vec{n})(\partial_{\mu}\vec{n}\partial^{\mu}\vec{n})^{\frac{3}{2}}, \quad \sigma(\vec{n}) = \left(\frac{1+n^{3}}{1-n^{3}}\right)^{\frac{3}{2}\left(\frac{1}{m}-1\right)} \left[\frac{1+\frac{1+n^{3}}{1-n^{3}}}{1+\left(\frac{1+n^{3}}{1-n^{3}}\right)^{\frac{1}{m}}}\right]^{3}$$

$$\rightarrow \quad L = \left(\frac{|u|^{\frac{1}{m}-1}}{1+|u|^{\frac{2}{m}}}\right)^3 (\partial_{\mu} u \partial^{\mu} u^*)^{\frac{3}{2}}$$

Equations of motion (integrable subsystem)

$$\partial_{\mu} \left[\frac{|u|^{\frac{1}{m}-1}}{1+|u|^{\frac{2}{m}}} (\partial_{\nu} u \partial^{\nu} u^*)^{\frac{1}{2}} \partial^{\mu} u \right] = 0 \quad \text{and} \quad \partial_{\mu} u \partial^{\mu} u = 0$$

< □ ▶

< □ > < □ > < □ >

-12

solution

$$u = rac{1}{\sinh^m \eta} e^{im(\xi+\phi)}$$
 with $Q_H = -m^2$

• Energy-charge dependence

$$E = \sqrt{2}(2\pi)^2 |Q_H|^{\frac{3}{2}}$$

splitting of solitons (?)

< □ ▶

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

-1

• Faddeev-Niemi action

$$S = \int d^4x \, rac{1}{2} m^2 (\partial_\mu ec n)^2 - rac{1}{4e^2} \left[ec n \cdot (\partial_\mu ec n imes \partial_
u ec n)
ight]^2$$

Cho-Faddeev-Niemi decomposition

$$A^{a}_{\mu} = \epsilon^{abc} n^{b} \partial_{\mu} n^{c} + X^{a}_{\mu}$$

 \circ Glueballs as knotted solitons

$$M\sim m_0|Q_H|^{rac{3}{4}}, \quad m_0\simeq 1500 Mev$$

< □ ▶

A

-1

The Eikonal Anzatz can describe

- Qualitative features
 - really knotted (multi-knotted) configuration
- Quantitative features
 - \circ topology well defined Hopf index
 - energy (in each topological sector) is bounded the below
 - ∘ energy approx. 20% accuracy

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

|--|--|

Q _H	type of the knot (<i>m</i> , <i>n</i>)	E _{min}	E _{num}	accuracy
1	(1,1)	304.3	252.0	20.0%
2	(1,2)	467.9	417.5	12.0 %
	(2,1)	602.7		
3	(1,3)	658.1	578.5	13.8 %
	(3,1)	997.3		
4	(1,4)	855.5	743.0	15.0%
	(2,2)	914.3		
	(4,1)	1466.4		
5	(1,5)	1056.1	905.0	16.8 %
	(5,1)	2000.0		

• Equation

$$(\partial_{\nu} u)^2 (\partial_{\nu} u^*)^2 + \alpha (\partial_{\nu} u \partial^{\nu} u^*)^2 = 0$$

• Generalized eikonal knots

$$u(\eta,\xi,\phi) = A\sinh^{\pm a|k|} \eta \frac{\left(|m|\cosh\eta + \sqrt{k^2 + m^2\sinh^2\eta}\right)^{\pm a|m|}}{\left(|k|\cosh\eta + \sqrt{k^2 + m^2\sinh^2\eta}\right)^{\pm a|k|}} e^{i(m\xi + n\phi)}$$

where

$$a^{2}(\alpha) = \frac{(1-\alpha)}{(1+\alpha)} \pm \sqrt{\frac{(1-\alpha)^{2}}{(1+\alpha)^{2}}} - 1$$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

-12

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 \circ general solutions $u \to F(u)$

$$\circ Q_H = -mn$$

- \circ identical geometrical structure
- New integrable subsystems

$$L = G(|u|) \left(K^{(3)}_{\mu} \partial^{\mu} u^* \right)^{\frac{1}{2}}$$

where

$$\mathsf{K}^{(3)}_{\mu} = \alpha (\partial_{\nu} u \partial^{\nu} u^{*})^{2} \partial_{\mu} u + \beta (\partial_{\nu} u)^{2} (\partial_{\nu} u \partial^{\nu} u^{*}) \partial_{\mu} u^{*} + \gamma (\partial_{\nu} u)^{2} (\partial_{\nu} u^{*})^{2} \partial_{\mu} u$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

3

	Eikonal Equation and Eikonal Knots Dynamical Models for Eikonal Knots Application: Approximated Solutions of the FN Model Generalized Eikonal Knots Summary and Perspectives
--	--

\circ for

$$G_{m,a}(|u|) = \left(\frac{|u|^{\frac{1-am}{am}}}{1+|u|^{\frac{2}{am}}}
ight)^3$$

solutions

$$u = rac{1}{\sinh^{am}\eta} e^{im(\xi+\phi)}$$

 \circ energy-charge relation

$$E = 2\pi^2 \sqrt{\lambda_+ [(1+\beta)\lambda_-^2 + \alpha\lambda_+]} a^3 |Q_H|^{3/2}$$

▲ロト ▲圖ト ▲国ト ▲国ト

-21

うへつ

Eikonal Equation and Eikonal Knots Dynamical Models for Eikonal Knots Application: Approximated Solutions of the FN Model Generalized Eikonal Knots Summary and Perspectives		
Dynamical Models for Eikonal Knots Application: Approximated Solutions of the FN Model Generalized Eikonal Knots Summary and Perspectives		Eikonal Equation and Eikonal Knots
Application: Approximated Solutions of the FN Model Generalized Eikonal Knots Summary and Perspectives		Dynamical Models for Eikonal Knots
Generalized Eikonal Knots Summary and Perspectives	A	Application: Approximated Solutions of the FN Model
Summary and Perspectives		Generalized Eikonal Knots
		Summary and Perspectives

Q _H	X	E _{min}	E _{num}	accuracy
1	1.170	296.0	252.0	17.5%
2	0.954	467.0	417.5	11.8 %
3	0.885	651.0	578.5	12.5 %
4	0.859	840.9	743.0	13.0%
5	0.859	1034.1	905.0	14.4 %

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

• knotted and multi-knotted (linked) structures with an arbitrary value of the Hopf index

- \circ analytical description
- \circ (new) integrable dynamical subsystems
- \circ energy-charge relation
- approximation of the Faddeev-Niemi hopfions

 \rightsquigarrow relation with the Faddeev-Niemi hopfions

 \rightsquigarrow the energy-charge formula - interaction of the knots

- 4 同 ト 4 三 ト 4 三 ト

 $\mathcal{A} \mathcal{A} \mathcal{A}$