NMR Measurement of Vortex Formation and Dynamics in Rotating Superfluid ³He-B as a function of Vortex Damping

A.P. Finne

Experiment:

Theory:

M. Krusius

V.B. Eltsov

J. Kopu

G.E. Volovik

Low Temperature Laboratory Helsinki University of Technology

Overview

- The experiment
- NMR Measurement
- Vortex injection and evolution at high T
- Vortex injection and evolution at low T
 - Multiplication
 - propagation as a front
- Conclusions

The Rota cryostat

- Superfluid below 2.5 mK:
 - Dilution refrigerator for precooling
 - Adiabatic nuclear demagnetization cooling for superfuid ³He
- Rotation up to 4 rad/s
- Creation of flow with rotation
 - normal component follows the container
 - superfluid at rest until vortices form

Experimental setup

- Vortex injection through:
 - 1. Unstable phase boundary
 - 2. Neutron absorption
 - 3. Remnant vortices
 - 4. Instability at wall
- NMR detection:
 - Number of vortices
 - Configuration
- Two detectors: evolution of the vortex configuration in time and space

CW-NMR

•High Q LC resonator for pick-up

•Sweep magnetic field

•Cold preamplifier (4K)

NMR in ³He-B

- Order parameter of the form $\vec{R}(\hat{n}, \theta)$
 - The symmetry axis \hat{n} forms the texture
- Resonance frequency for NMR ($H >> H_D \approx 3 \text{ mT}$):

Solid

30

A phase

vortex lines \rightarrow flow pattern $\rightarrow \hat{n}$ texture \rightarrow NMR

Flare out texture

Magnetic field:

 $F_{H} = -a \int d^{3} \mathbf{r} (\hat{\mathbf{n}} \cdot \mathbf{H})^{2}$ $\rightarrow \hat{\mathbf{n}} \| \mathbf{H}$

Surfaces: $F_{s} = -d\int d^{2}\mathbf{r} (\mathbf{H} \cdot \vec{R} \cdot \hat{\mathbf{s}})^{2}$ $= 63.4^{\circ}$ $= 60^{\circ}$ $H \uparrow \swarrow$

Vortex lines in rotating flow

Vortex lines and counterflow

Flow:

$$F_{v} = -\frac{2a}{5v_{D}^{2}}\int d^{3}\mathbf{r} (\mathbf{H} \cdot \vec{R} \cdot \mathbf{v})^{2}$$

In rotating counterflow the preferred orientation = 63.4° (the same as for the wall but Differs by $90^{\circ} \rightarrow$ texture transitions)

Vortex lines:

$$F_{v} = \int_{c} d^{3}\mathbf{r} \lambda (\mathbf{H} \cdot \vec{R} \cdot \hat{\mathbf{l}})^{2}$$

1. flow around the core

2. core

Spectra: Evneriment ve Theory

- = 0
 spectrum –
 no fitting
 parameters
- Equilibrium spectrum – λ fitted (in agreement with theoretical estimates)

Evolution of vortex lines in rotating flow

 $T/T_{\rm c}$

 $T(\mathbf{K})$

- dissipative mutual friction
- ' reactive mutual friction

High temperatures ($T > 0.6 T_c$)

High mutual friction damping:

•Vortex lines move fast to become rectilinear lines

•Number of injected vortex loops = number of rectilinear vortex lines

Vortex number:

•Experimentally

also

•Numerically by calculating spectrum

Turbulent vortex dynamics: The transition

- •Transition controlled by mutual friction
- •Vortex number increases in a rapid burst
- •Initial configuration affects the onset of the turbulent burst

Different experiment: How does the equilibrium number of vortex lines propagate into the vortex free region

NMR on superfluid "spin-up"

Helical vortex state

The Front

- NMR absorption at the counterflow peak $(\sin^2\beta=0.8)$ is reduced
 - →Azimuthal counterflow vanishes
- The front becomes thinner with reducing temperature
- The thickness of the front does not dependend on

Maximum Helix

Exponential Decay

- Decay becomes faster with reducing temperature
- Convective relaxation:
 v_{s,z} assists in the decay of the helix

Even lower temperatures $(T < 0.3 T_c)$

- The effect of counterflow vanishes exponentially below ~0.5 T_c
- These equilibrium state NMR techniques do not seem to work

Time-of-flight measurement: the mutual friction parameter

•Measure the time a vortex line uses for travelling a known distance:

 \rightarrow velocity

 \rightarrow compare to v_{L,z}= R \rightarrow

•Various methods to perform the measurement

Conclusions

- NMR provides a powerfull non-invasive method for counting vortex lines and their configuration.
- In rotating ³He-B:
 - T>0.6 Tc: Dynamics of single vortex lines
 - T<0.6 Tc: Vortex number tends to increase to N_{eq}, collective effects
 - The presence of turbulence concluded indirectly