The Density Conjecture for Bounded Geometry Kleinian Groups

Ken Bromberg and Juan Souto

June 20, 2005

Definitions:

A Kleinian group Γ is a discrete (torsion free) subgroup of $PSL_2\mathbb{C}$.

The quotient $M = \mathbb{H}^3/\Gamma$ is a hyperbolic 3-manifold.

The convex core CC(M) is the smallest convex subset of M whose inclusion is a homotopy equivalence.

 Γ (or M) is geometrically finite if CC(M) has finite volume.

Conjecture 1 (Bers-Sullivan-Thurston)

Every finitely generated Kleinian group is an algebraic limit of geometrically finite Kleinian groups.

A sequence of Kleinian groups Γ_i converges to Γ algebraically if there exists isomorphisms

$$\rho_i: G \longrightarrow \Gamma_i$$

and

$$\rho: G \longrightarrow \Gamma$$

such that $\rho_i(g) \to \rho(g)$ for all $g \in G$.

M has ϵ -bounded geometry if the length of any closed geodesic in M has length $\geq \epsilon$.

History

- Bounded geometry, freely indecomposable fundamental group and no parabolics - Minsky
- Unbounded geometry, freely indecomposable fundamental group and no parabolics, B, Brock-B
- Complete Conjecture Many people!

Outline of proof

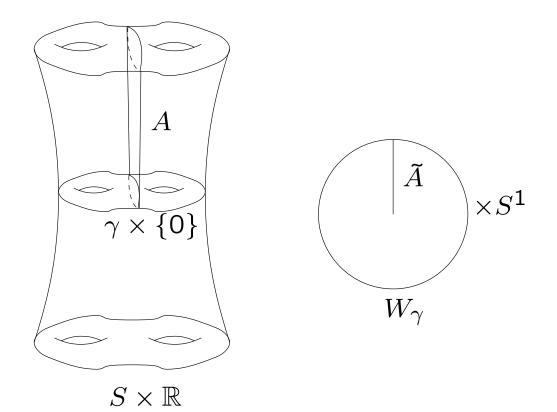
- Tameness: Associate end-invariants to a hyperbolic 3-manifold - Thurston, Bonahon, Canary, Agol, Calegari-Gabai
- Limit theorems: Show that a manifold with a given set of end-invariants can be realized as the algebraic limit of geometrically finite manifolds - Thurston, Ohshika, Brock, Kleineidam-Souto, Kim-Ohshika, Lecuire, Namazi-Souto
- Ending lamination conjecture: Show that a manifold is uniquely determined by its endinvariants: Minsky, Minsky-Masur, Brock-Canary-Minsky

We'll only discuss the case where Γ is isomorphic to $\pi_1(S)$ for a surface S of genus $g \ge 2$. We'll further assume that Γ does not contain parabolics.

In this case if Γ is geometrically finite then CC(M) is compact. Such manifolds and groups are called *quasifuchsian*.

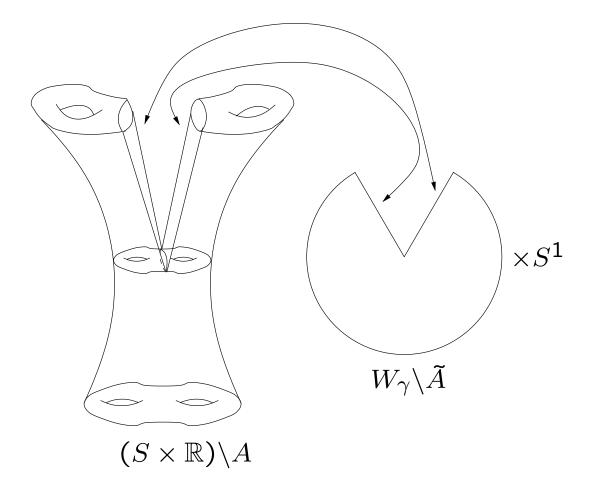
If Γ is geometrically infinite but $CC(M) \neq M$ then M is singly degenerate.

Grafting



S is a closed surface and γ a simple closed curve on S. A is the annulus $\gamma \times [0, \infty)$ in $S \times \mathbb{R}$.

 W_{γ} is the cover of $S \times \mathbb{R}$ coming from the subgroup generated by γ . A lifts homeomorphically to \tilde{A} in W_{γ} .



We form a new copy of $S \times \mathbb{R}$ by gluing $(S \times \mathbb{R}) \setminus A$ to $W_{\gamma} \setminus \tilde{A}$.

Define a map

$$\pi_{\gamma}: S \times \mathbb{R} \longrightarrow S \times \mathbb{R}$$

by setting π_{γ} to be the identity on $(S \times \mathbb{R}) \setminus A$ and the covering map on $W_{\gamma} \setminus \tilde{A}$.

If (M,g) is a complete hyperbolic metric and $\gamma \times \{0\}$ is a geodesic then $g_{\gamma} = \pi_{\gamma}^* g$ is a hyperbolic cone-metric.

Theorem 2 (B, Brock-B) The grafted end is geometrically finite.

A geodesic is *unknotted* if it is isotopic to a simple closed curve on $S \times \{0\}$. Otal showed that a sufficiently short geodesic is unknotted.

Therefore if (M,g) has unbounded geometry there are a sequence of geodesic on which we can perform grafting. This gives a sequence of geometrically finite hyperbolic cone-manifolds converging to (M,g).

We then use the deformation theory of hyperbolic cone-manifolds developed by Hodgson and Kerckhoff to find smooth geometrically finite manifolds converging to (M, g).

Theorem 3 (Thurston) Let g_i be a family of hyperbolic metrics on $M \cong S \times \mathbb{R}$ with ϵ bounded geometry and assume that x_i are contained in the convex core of (M, g_i) . Then there exist a hyperbolic metric (M, g_{∞}) with ϵ bounded geometry and a basepoint $x \in M$ such that (after passing to a subsequence) $((M, g_i), x_i)$ converges to $((M, g_{\infty}), x_{\infty})$ in the pointed bi-Lipschitz topology. That is for any compact set $K \subset M$ with $x \in K$ and any L > 1 there exists smooth L-bi-Lipschitz embeddings

$$\phi_i : ((K, g_\infty), x_\infty) \longrightarrow ((M, g_i), x_i)$$

for *i* sufficiently large.

Theorem 4 Given ϵ, L, R there exist n and Ksuch that for every ϵ -bounded geometry manifold $M \cong S \times \mathbb{R}$ and a every closed geodesic γ of length $\leq L$ there exists a cover $\pi : \widehat{M} \longrightarrow M$ such that the following holds.

- 1. The geodesic γ lifts homeomophically to an unknotted simple closed geodesic $\hat{\gamma}$.
- 2. The tube radius of $\hat{\gamma}$ is $\geq R$.
- 3. The degree of the cover is $\leq n$.
- 4. Let \hat{Z} be the conformal boundary obtained from grafting along $\hat{\gamma}$. There exists an $X \in \mathcal{T}(S)$ such that $d_{\mathcal{T}(S)}(\hat{Z}, \pi^*(X)) \leq K$.

Proof. Assume not. For any metric there is some finite degree cover where (1) and (2) and hold. Assume that we have a sequence of examples of manifolds (M, g_i) and curves γ_i where the degree of this cover must limit to infinity. Extract a geometric limit of the (M, g_i) with the basepoints on γ_i . In the limit we only need to take a finite degree cover. By pulling this cover back to the approximates we obtain a contradiction.

Repeat this process for (4).

Theorem 5 (Minsky) If (M,g) is singly degenerate with bounded geometry then it is an algebraic limit of geometrically finite groups.

Proof.(B-Souto)

There exists a sequences of closed geodesics γ_i of length $\leq L$ exiting the degenerate end of (M,g). By Theorem 4 there exists an n such that for each i there is cover (M_i,g_i) of degree $\leq n$ such that γ_i lifts homeomorphically to an unknotted geodesic $\hat{\gamma}_i$ with tube radius $\geq R$.

There are only finitely many covers of degree $\leq n$ so we can pass to a subsequence such that each (M_i, g_i) is a fixed cover (\hat{M}, \hat{g}) . Graft (\hat{M}, \hat{g}) along $\hat{\gamma}_i$ and then smooth using Hodgson-Kerckhoff cone deformation theory to obtain quasifuchsian manifolds $Q(\hat{Z}_i, \hat{Y})$ converging to (\hat{M}, \hat{g}) .

By (4) of Theorem 4 there exists a K such that for each i there is an $X_i \in \mathcal{T}(S)$ with $d_{\mathcal{T}}(\hat{Z}_i, \pi^*(X_i)) \leq K$. The compactness of K-quasiconformal maps and Sullivan rigidity imply that the sequences $Q(\hat{Z}_i, \hat{Y})$ and $Q(\pi^*(X_i), \hat{Y})$ have the same limits.

Each $Q(\pi^*(X_i), \hat{Y})$ will isometrically cover $Q(X_i, Y)$ and therefore $Q(X_i, Y)$ will converge to (M, g).

