Spherical cone structures

on 2-bridge links

Joan Porti (UAB)

ICTP Trieste, June 24, 2005

Spherical cone structures on 2-bridge links — p.1/18



Cone 3-manifolds

A Euclidean cone 3-manifold is locally isometic to Euclidean space
except at the singular locus X. X is a graph locally isometric to

either or
>
el e
777777777 _ i 041/2 a2/2 o
r] 2 @as/Q @)’
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Cone 3-manifolds

A Euclidean cone 3-manifold is locally isometic to Euclidean space
except at the singular locus X. X is a graph locally isometric to

either or
>
el e
777777777 _ i 041/2 a2/2 o
’I"C > @03/2 @%

ds? =dr? + £r3d0?> +dh?* Y .(27 — a;) < 47 at vertices
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Cone 3-manifolds

A Euclidean cone 3-manifold is locally isometic to Euclidean space
except at the singular locus X. X is a graph locally isometric to

either or
>
el e
777777777 _ i a1/2 a2/2 o
’I"C > @03/2 @%

ds? =dr? + £r3d0?> +dh?* Y .(27 — a;) < 47 at vertices
Euclidean can be replaced by spherical or hyperbolic.

hyperbolic:  ds? = dr?+ & sinh?(r) d 6% + cosh®(r)d h?
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Cone 3-manifolds

A Euclidean cone 3-manifold is locally isometic to Euclidean space
except at the singular locus X. X is a graph locally isometric to

either or
>
el e
777777777 _ i a1/2 a2/2 o
’I"C > @03/2 @%

ds? =dr? + £r3d0?> +dh?* Y .(27 — a;) < 47 at vertices
Euclidean can be replaced by spherical or hyperbolic.

spherical:  ds? =dr?+ 2 sin’(r) d6? + cos?(r)d h?
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Cone 3-manifolds

A Euclidean cone 3-manifold is locally isometic to Euclidean space
except at the singular locus X. X is a graph locally isometric to

either or
>
el e
777777777 _ i a1/2 a2/2 o
’I"C > @03/2 @%

ds? =dr? + £r3d0?> +dh?* Y .(27 — a;) < 47 at vertices
Euclidean can be replaced by spherical or hyperbolic.

Locally defined as metric cone on spherical (n — 1)- cone manifolds
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Motivation and goal

Cone 3-manifolds are well understood when cone angles are < «
(in the proof of the orbifold theorem)

a3

o8
a1
e.g. > .(2m — ;) < 4m at vertices implies that
for cone angles < 27 /3 singular vertices do not occur
for cone angles < = all singular vertices are trivalent
and during deformations the singular locus does not cross

a2
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Motivation and goal

Cone 3-manifolds are well understood when cone angles are < «
(in the proof of the orbifold theorem)

a3

o8
a1
e.g. > .(2m — ;) < 4m at vertices implies that
for cone angles < 27 /3 singular vertices do not occur
for cone angles < = all singular vertices are trivalent
and during deformations the singular locus does not cross

a2

GOAL: study examples with cone angle > =«

S3 with singular locus ¥ = two bridge knots and links
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2-bridge knots and links

¥ = L C S?is obtained by gluing two trivial 2-tangles:
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2-bridge knots and links

¥ = L C S?is obtained by gluing two trivial 2-tangles:
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2-bridge knots and links

¥ = L C S?is obtained by gluing two trivial 2-tangles:

L C S? has at most two components and it is:
o either hyperbolic (5° — L complete hyperbolic).
e or atorus link £(2,n) (L is made of fibres of a Seifert fibration of 5°)
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2-bridge knots and links

¥ = L C S?is obtained by gluing two trivial 2-tangles:

W @

L C S? has at most two components and it is:
o either hyperbolic (5° — L complete hyperbolic).
e or atorus link £(2,n) (L is made of fibres of a Seifert fibration of 5°)

The double cover of S2 branched along L is a (generalized) lens space
(=) -40
N
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Cone angles < 7

L c 53 2-bridge knot or link
C(a) = cone structure on S?, singular along > = L and cone angle a.
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Cone angles < 7

L c 53 2-bridge knot or link
C(a) = cone structure on S?, singular along > = L and cone angle a.

o C(m) is spherical (the double branched cover is a lens space).
o If L hyperbolic, then C(«a) hyperbolic for a € [0, ¢).
(by W. Thurston’s hyperbolic Dehn filling).
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Cone angles < 7

L c 53 2-bridge knot or link
C(a) = cone structure on S?, singular along > = L and cone angle a.

o C(m) is spherical (the double branched cover is a lens space).
o If L hyperbolic, then C(«a) hyperbolic for a € [0, ¢).
(by W. Thurston’s hyperbolic Dehn filling).

o From the proof of the orbifold thm:

If L hyperbolic, then there exists 2F < ap <7
such that C(ag) Euclidean.

(ap = 2= iff L = figure eigth)
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Cone angles < 7

L c 53 2-bridge knot or link
C(a) = cone structure on S?, singular along > = L and cone angle a.

o C(m) is spherical (the double branched cover is a lens space).
o If L hyperbolic, then C(«a) hyperbolic for a € [0, ¢).
(by W. Thurston’s hyperbolic Dehn filling).

» If L hyperbolic, then there exists 2T < a, < 7 such that

" hyperbolic if a < ag

C(a)is { Euclidian if o = o

_ spherical if g <a <7
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Cone angles < 7

L c 53 2-bridge knot or link
C(a) = cone structure on S?, singular along > = L and cone angle a.

o C(m) is spherical (the double branched cover is a lens space).
o If L hyperbolic, then C(«a) hyperbolic for a € [0, ¢).
(by W. Thurston’s hyperbolic Dehn filling).

» If L hyperbolic, then there exists 2T < a, < 7 such that

" hyperbolic if a < ag

C(a)is { Euclidian if o = o

_ spherical if g <a <7

Question: what happens for oo > 7©?
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Cone angles > «

Theorem
If L is a hyperbolic two bridge link, C(aq) Euclidean, then

C(«) is spherical for a € (ag, 27 — ayp).
e When a — 21 — «ag, C'(a) — spherical suspension of

sphere with 4 cone points

and the tunnels shrink to a point.
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Cone angles > «

Theorem
If L is a hyperbolic two bridge link, C(aq) Euclidean, then

C(«) is spherical for a € (ag, 27 — ayp).
e When a — 21 — «ag, C'(a) — spherical suspension of

sphere with 4 cone points

and the tunnels shrink to a point.

When o — 27 — ag T —0
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Cone angles > «

Theorem
If L is a hyperbolic two bridge link, C(aq) Euclidean, then

C(«) is spherical for a € (ag, 27 — ayp).
e When a — 21 — «ag, C'(a) — spherical suspension of

sphere with 4 cone points

and the tunnels shrink to a point.

When o — 27 — ag T —0

SR
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Cone angles > «

Theorem
If L is a hyperbolic two bridge link, C(aq) Euclidean, then

C(«) is spherical for a € (ag, 27 — ayp).
e When a — 21 — «ag, C'(a) — spherical suspension of

sphere with 4 cone points

and the tunnels shrink to a point.

When o — 27 — ag T —0

WG

When o — «y, rescale ) = C(ap) Euclidean.

\/—7ao
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A tool for the proof: variety of representations

Want to deform incomplete metrics on S° — L that complete to C'(«)

Dev: S3—L— S° (local isometry)
hol: m(S° —L)— SO(4) (representation)

Dev(v - x) = hol(v)(Dev(x))
Step 1 Study hom(m(S® — L), SO(4))/S0(4)

Step 2 Show that some points in hom((S® — L), SO(4))/S0O(4)
give cone structures C(«).
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A tool for the proof: variety of representations

Want to deform incomplete metrics on S° — L that complete to C'(«)

Dev: S3—L— S° (local isometry)
hol: m(S° —L)— SO(4) (representation)

Dev(v - x) = hol(v)(Dev(x))
Step 1 Study hom(m(S® — L), SO(4))/S0(4)

Step 2 Show that some points in hom((S® — L), SO(4))/S0O(4)
give cone structures C(«).

, _ Spin(4) = SO(4) = §8° x §°
Easier to work with —~
Spin(3) = SO(3) =2 S° (diagonal in Spin(4))
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1%

SU(2)

Spin(3) and Spin(4)

(a,b) €S> C C? — (4

Ql o

) € SU(2)
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Spin(3) and Spin(4)

S8 = SU(2) (a,b) € S3C C? (% 2) € SU(2)
SU(2) — SU(
-

SU(2) x SU(2) = Spin(4) r b pe 2)

Vp,q € SU(2)
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Spin(3) and Spin(4)

$3 = SU(2) (a,b) € S3C C? (% 2) € SU(2)
SU(2) x SU(2) = Spin(4) SUR) = SUR) e sue)
x = prq

Spin(3) = SU(2)C SU(2) x SU(2) diagonal (preserves Re(a) = 0).
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Spin(3) and Spin(4)

$3 = SU(2) (a,b) € S3C C? (% 2) € SU(2)
SU(2) x SU(2) = Spin(4) SUR) = SUR) e sue)
x = prq

Spin(3) = SU(2)C SU(2) x SU(2) diagonal (preserves Re(a) = 0).

(p, q) is a rotation of angle ¢ tr(p) =tr(q) = £2cos(6/2).

. . —1 . )
e 0 . a b)) (&P o0 _ ell@=Plg  eilath)y
0 e '@ —b a 0 e P T\ —ei(ma=B)p gi(—ath)g
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Spin(3) and Spin(4)

$3 = SU(2) (a,b) € S3C C? (% 2) € SU(2)
SU(2) x SU(2) = Spin(4) SUR) = SUR) e sue)
x = prq

Spin(3) = SU(2)C SU(2) x SU(2) diagonal (preserves Re(a) = 0).
(p, q) is a rotation of angle ¢ tr(p) =tr(q) = £2cos(6/2).

X (T') = hom(T",SU(2))/SU(2) ,T = m1(S° — L)
Holonomy reps. of C'(a) — L viewed in:

{(p",p7) € X(T) x X(T) | tr(p™ (1)) = tr(p~ (1)), pmeridian}
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Representations in SU(2) with a <«

X(T') = hom(T, SU(2))/SU(2)
{(p,p7) € X(T) x X(T) | tr(p™ (1)) = tr(p~ (), pmeridian}

pd
~ X(I')
Pag
try,
Pa
(8%
(874 (87 T
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Representations in SU(2) with a <«

X(T') = hom(T, SU(2))/SU(2)
{(p,p7) € X(T) x X(T) | tr(p™ (1)) = tr(p~ (), pmeridian}

pd
~ X(I')
Pag
try,
Pa
‘ (8%
(874 (87 T

X (T') well understood for o < 7.

C(ao) Euclidean — pf = p_ . (pd , ps,) diagonal, in Spin(3).
(pt , pa,) comes from Isom(R®) — SO(3)
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Representations in SU(2) with a <«

X(T') = hom(T, SU(2))/SU(2)
{(p,p7) € X(T) x X(T) | tr(p™ (1)) = tr(p~ (), pmeridian}

pe
~ X(I')
Pag
try,
Po
! (8%
(874 (87 T

C(ao) Euclidean = pf = p, . (pt , ps,) diagonal, in Spin(3).
(Pt , ps,) comes from Isom(R?) — SO(3)

How to find reps. in (7,27 — ag)?
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Representations in SU(2) with a <«

X(T') = hom(T, SU(2))/SU(2)
{(p,p7) € X(T) x X(T) | tr(p™ (1)) = tr(p~ (), pmeridian}

pe
~ X(I')
Pag
try,
Po
! (8%
(874 (87 T

How to find reps. in (7,27 — ag)?
e reach a = 7w + ¢ for some ¢ > 0 (local paramet./rigidity)
o (pf ., pric) @and (pf__, pr_.) project to the same rep. in SO(4).

Can complete the ellipse symmetrically.
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Representations in SU(2) with a > «

Using the structure of X (I') when o < w and the symmetry:

pa
X (T)=hom(T,SU(2))/SU(2))
try
Pa
* o
o T 2m—aog
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Representations in SU(2) with a > «

Using the structure of X (I') when o < w and the symmetry:

X (T)=hom(T,SU(2))/SU(2))

tr“

1
QQ ™ 2T —Qg

(P4, Pa) = £(P3n—ar Pan—a)
i.e. (pr,pz) and (p3 _., ps._,) induce the same rep. in SO(4).

Notice that tr(pE (1)) = £2 cos(a/2) local parameter at o = .
thus the angle a > = makes sense.
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Representations in SU(2) with a > «

Using the structure of X (I') when o < w and the symmetry:

pa
X (T)=hom(T,SU(2))/SU(2))
try
Pa
* o
o T 2m—aog

Next step: why those reps. correspond to spherical structures?
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Representations in SU(2) with a > «

Using the structure of X (I') when o < w and the symmetry:

pa
X (T)=hom(T,SU(2))/SU(2))
try
Pa
* o
o T 2m—aog

Next step: why those reps. correspond to spherical structures?

C(ap) Euclidean: p = p,_ (in Spin(3))
Par—ay = Par—a, (@S0 in Spin(3)). Also want to show:

lim C(a) = spherical suspension of S? with 4 cone points
a—2mT—Qg
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Realizing reps. as holonomy of cone manifolds

(pt, ps) € X(T') x X(T') holonmy of a sph.
A a € [m, 21 — ag)
metric on S° — L that completes to C'(«)

A Is open (deformations of holonomy = defs. of structure)
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Realizing reps. as holonomy of cone manifolds

(pt, ps) € X(T') x X(T') holonmy of a sph.
A a € [m, 21 — ag)
metric on S° — L that completes to C'(«)

A Is open (deformations of holonomy = defs. of structure)
To show A is closed take «,, € A, a,, / as and look at lim C(a,,) =7
Need to bound:

bound above the diameter of C(a,)

radius of an embedded metric tube of ¥ C C(ay,) (> r > 0)

injectivity radius on C(a,) — N.(%) (> € >0)

With those bounds, lim C(ay,) = Cas) and a, € A.
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Finding bounds

a, € A, a, / as and look at lim C(ay,) =7
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Finding bounds

a, € A, a, / as and look at lim C(ay,) =7

diam(C(ay,)) < 7 bc. itis an Alexandrov space with curv. > 1.
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Finding bounds

a, € A, a, / as and look at lim C(ay,) =7
diam(C(ay,)) < 7 bc. itis an Alexandrov space with curv. > 1.
r(a) =sup{d > 0| N5(X) C C(a) embedded metric tube

Need to bound r(«) > 0 uniformly for 7 < a < ¢ < 27 — ayg
(i.e. the singular locus does not cross with itself before 27 — «g).

o vol(C'(a)) < 27r(a) + 27(ax — )
o vol(C'(a)) = vol(C(2m — o)) + 27 (v — )

Hence r(a) > 5= vol(C'(27 — ))

— 27
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Dirichlet domain

e Proof of | vol(C(a)) < 27mr(a) + 27(a — )

r=r(a) =sup{d > 0| Ns(X) C C(a) embedded metric tube

o segment of length 2r perpendicular to 3.

G/\a
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Dirichlet domain

e Proof of | vol(C(a)) < 27mr(a) + 27(a — )

o segment of length 2 perpendicular to 3.
D(o) r € C(«a) |x has a unique minimizing segment to o

D(o) not convex but star-shaped!
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e Proof of

vol(C(a)) < 2nr(a) + 2w (a0 — )

o segment of length 2 perpendicular to 3.

D(o)

Dirichlet domain

x € C'(a) |z has a unique minimizing segment to o

D(o) C alens of width 2r and 4 lenses of width 25 in .S°.

(a—m)/

vol(lens)= =-width(lens)
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Volume and symmetry

e Proof of | vol(C(a)) = vol(C(27 — a)) + 27(a — ) | Ve € [r,2m — ap)

[(a) = total length of ¥ C C(«)

Schl&fli’'s formula: d vol C(a) = 51(a) d o

vol C(a) = fo?o 116)do

Thus vol C'(«) increases whith a.
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Volume and symmetry

e Proof of | vol(C(a)) = vol(C(27 — a)) + 27(a — ) | Ve € [r,2m — ap)

[(a) = total length of ¥ C C(«)

Schl&fli’'s formula: d vol C(a) = 51(a) d o

vol C(a) = f;‘o 116)do

By symmetry: l(a) =47 — 127 — )
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Volume and symmetry

e Proof of | vol(C(a)) = vol(C(27 — a)) + 27(a — ) | Ve € [r,2m — ap)

[(a) = total length of ¥ C C(«)

Schiafli's formula: vol C(a) = [ 51(0) d 6
By symmetry: l(a) =47 — 127 — )

vol(C(a) /W %l(@) 40 + /a %z(e) T,

0 T
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Volume and symmetry

e Proof of | vol(C(a)) = vol(C(27 — a)) + 27(a — ) | Ve € [r,2m — ap)

[(a) = total length of ¥ C C(«)

Schiafli's formula: vol C(a) = [ 51(0) d 6
By symmetry: l(a) =47 — 127 — )

vol(C(a) /W %l(@) 40 + /a 31(9) T,

0 T

/W 11(9)de+/a4 1aze+/2w_a L10)do
2 1 2

T
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Volume and symmetry

e Proof of | vol(C(a)) = vol(C(27 — a)) + 27(a — ) | Ve € [r,2m — ap)

[(a) = total length of ¥ C C(«)

Schiafli's formula: vol C(a) = [ 51(0) d 6
By symmetry: l(a) =47 — 127 — )

vol(C(a) /W %l(@) 40 + /a 31(9) T,

0 T

0 1 (8 1 2T— o 1
/ —z(e)d9+/ 47r§d9—|—/ J1(6) d6

/ 0)do0+ (. — )2
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More bounds (final)

vol(C(a)) < 2rr(a) + 2n(a — ) s YICET =)
vol(C(a)) = vol(C (27 — a)) + 27 (a — ) N 27

vol(C'(ag)) = 0. Thus (271 — ag) > 0 trivial bound.
27 (a — ) = vol(spherical suspension of S%(«, a, a, a))
In particular vol(C'(2m — ag))=vol. spherical suspension
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More bounds (final)

vol(C(a)) < 2rr(a) + 2n(a — ) s YICET =)
vol(C(a)) = vol(C (27 — a)) + 27 (a — ) N 27

vol(C'(ag)) = 0. Thus (271 — ag) > 0 trivial bound.
27 (a — ) = vol(spherical suspension of S%(«, a, a, a))
In particular vol(C'(2m — ag))=vol. spherical suspension

e The injectivity radius in C'(a) — N,.(X) is bounded because:

vol C'(a) increases whith a (Schlafli’'s).

diam(C(a)) < 7 (Alexandrov space).
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The crossing of ¥ when a — 27 — ag

The length of tunnels |7;| — 0 as a — 27 — ay,
by symmetry of the variety of reps.
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The crossing of ¥ when a — 27 — ag

The length of tunnels |7;| — 0 as a — 27 — ay,
by symmetry of the variety of reps.

We construct the metric on C' (27 — «g) from the tangles
and we deform them decreasing o explicitely.

e

o= 2T — Qg
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The crossing of ¥ when a — 27 — ag

We construct the metric on C' (27 — «g) from the tangles
and we deform them decreasing o explicitely.

e

a =27 — Qg a < 2T — oy

At 2 — o angle of crossing is # 0 (bc. (p . p, ) non abelian)
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The crossing of ¥ when a — 27 — ag

We construct the metric on C' (27 — «g) from the tangles
and we deform them decreasing o explicitely.

e

a = 2T — Qg a < 2T — oy
At 2 — o angle of crossing is # 0 (bc. (p . p, ) non abelian)
Why this deformation is the same as the previous one?
By the same volume calculations, can decrease a. to «
and apply de Rham’s global rigidity for orbifolds
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Torus links

Cone structures described by the basis of the Seifert fibration.
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Torus links

Cone structures described by the basis of the Seifert fibration.

PSLy(R) fora e (0,7 — 25)
C(a){ Nil for @ = =&

I 27 27
spherical fora € (m — m+ 27)

n ?

L =1t(2,n), n odd
(i.,e. L a knot).
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Torus links

Cone structures described by the basis of the Seifert fibration.

PSLy(R) fora c (0,7 — 2%)

L =1t(2,n), n odd "
(2,n) C(a){ Nil for @ = =&

(i.e. L a knot). . 2 2
spherical fora € (7 — 2%, 7 4 &)
s Y intersectes itself tangentially
Whenao — ™+ — : :
n and get a round circle with cone angle 477’

+ When n =3 C@Q @
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Addendum

During my talk | forgot to mention that A. Mednykh and A. Rasskazov had obtained the
same result for the fi gure eigth knot. Mednykh was attending the talk and complained
about my omission.

The referee of my paper let me know about that (so | should have mentioned it), but |
was not aware that this paper was available on the web. Google found the preprint in
http://cis.paisley.ac.uk/research/reports/tr22.zip

The paper of my talk can be found in

http://mat.uab.es/-~porti/twobridge040127.pdf
and it just appeared in Kobe J. of Math. 21 (2004), 61-70
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