Spherical cone structures

on 2-bridge links

Joan Porti (UAB)

ICTP Trieste, June 24, 2005

Cone 3-manifolds

- A Euclidean cone 3-manifold is locally isometic to Euclidean space except at the singular locus Σ. Σ is a graph locally isometric to

either

or

Cone 3-manifolds

- A Euclidean cone 3-manifold is locally isometic to Euclidean space except at the singular locus Σ. Σ is a graph locally isometric to

either

or

Cone 3-manifolds

- A Euclidean cone 3-manifold is locally isometic to Euclidean space except at the singular locus Σ. Σ is a graph locally isometric to

either

Or

- Euclidean can be replaced by spherical or hyperbolic.
hyperbolic: $\quad d s^{2}=d r^{2}+\frac{\alpha}{2 \pi} \sinh ^{2}(r) d \theta^{2}+\cosh ^{2}(r) d h^{2}$

Cone 3-manifolds

- A Euclidean cone 3-manifold is locally isometic to Euclidean space except at the singular locus Σ. Σ is a graph locally isometric to

either

Or

- Euclidean can be replaced by spherical or hyperbolic.
spherical: $\quad d s^{2}=d r^{2}+\frac{\alpha}{2 \pi} \sin ^{2}(r) d \theta^{2}+\cos ^{2}(r) d h^{2}$

Cone 3-manifolds

- A Euclidean cone 3-manifold is locally isometic to Euclidean space except at the singular locus Σ. Σ is a graph locally isometric to

either

Or

- Euclidean can be replaced by spherical or hyperbolic.
- Locally defined as metric cone on spherical ($n-1$)- cone manifolds

Motivation and goal

- Cone 3-manifolds are well understood when cone angles are $\leq \pi$ (in the proof of the orbifold theorem)

e.g. $\sum_{i}\left(2 \pi-\alpha_{i}\right)<4 \pi$ at vertices implies that
- for cone angles $<2 \pi / 3$ singular vertices do not occur
- for cone angles $<\pi$ all singular vertices are trivalent and during deformations the singular locus does not cross

Motivation and goal

- Cone 3-manifolds are well understood when cone angles are $\leq \pi$ (in the proof of the orbifold theorem)

e.g. $\sum_{i}\left(2 \pi-\alpha_{i}\right)<4 \pi$ at vertices implies that
- for cone angles $<2 \pi / 3$ singular vertices do not occur
- for cone angles $<\pi$ all singular vertices are trivalent and during deformations the singular locus does not cross

GOAL: study examples with cone angle $\geq \pi$
S^{3} with singular locus $\Sigma=$ two bridge knots and links

2-bridge knots and links

$\Sigma=L \subset S^{3}$ is obtained by gluing two trivial 2-tangles:

2-bridge knots and links

$\Sigma=L \subset S^{3}$ is obtained by gluing two trivial 2-tangles:

2-bridge knots and links

$\Sigma=L \subset S^{3}$ is obtained by gluing two trivial 2-tangles:

$L \subset S^{3}$ has at most two components and it is:

- either hyperbolic ($S^{3}-L$ complete hyperbolic).
- or a torus link $t(2, n)$ (L is made of fibres of a Seifert fibration of S^{3})

2-bridge knots and links

$\Sigma=L \subset S^{3}$ is obtained by gluing two trivial 2-tangles:

$L \subset S^{3}$ has at most two components and it is:

- either hyperbolic ($S^{3}-L$ complete hyperbolic).
- or a torus link $t(2, n)$ (L is made of fibres of a Seifert fibration of S^{3})

The double cover of S^{3} branched along L is a (generalized) lens space

Cone angles $\leq \pi$

$L \subset S^{3}$ 2-bridge knot or link
$C(\alpha)=$ cone structure on S^{3}, singular along $\Sigma=L$ and cone angle α.

Cone angles $\leq \pi$

$L \subset S^{3}$ 2-bridge knot or link
$C(\alpha)=$ cone structure on S^{3}, singular along $\Sigma=L$ and cone angle α.

- $C(\pi)$ is spherical (the double branched cover is a lens space).
- If L hyperbolic, then $C(\alpha)$ hyperbolic for $\alpha \in[0, \varepsilon)$. (by W. Thurston's hyperbolic Dehn filling).

Cone angles $\leq \pi$

$L \subset S^{3}$ 2-bridge knot or link
$C(\alpha)=$ cone structure on S^{3}, singular along $\Sigma=L$ and cone angle α.

- $C(\pi)$ is spherical (the double branched cover is a lens space).
- If L hyperbolic, then $C(\alpha)$ hyperbolic for $\alpha \in[0, \varepsilon)$. (by W. Thurston's hyperbolic Dehn filling).
- From the proof of the orbifold thm:

If L hyperbolic, then there exists $\frac{2 \pi}{3} \leq \alpha_{0}<\pi$ such that $C\left(\alpha_{0}\right)$ Euclidean.

$$
\text { (} \alpha_{0}=\frac{2 \pi}{3} \text { iff } L=\text { figure eigth) }
$$

Cone angles $\leq \pi$

$L \subset S^{3}$ 2-bridge knot or link
$C(\alpha)=$ cone structure on S^{3}, singular along $\Sigma=L$ and cone angle α.

- $C(\pi)$ is spherical (the double branched cover is a lens space).
 (by W. Thurston's hyperbolic Dehn filling).
- If L hyperbolic, then there exists $\frac{2 \pi}{3} \leq \alpha_{0}<\pi$ such that

$$
C(\alpha) \text { is }\left\{\begin{array}{l}
\text { hyperbolic if } \alpha<\alpha_{0} \\
\text { Euclidian if } \alpha=\alpha_{0} \\
\text { spherical if } \alpha_{0}<\alpha \leq \pi
\end{array}\right.
$$

Cone angles $\leq \pi$

$L \subset S^{3}$ 2-bridge knot or link
$C(\alpha)=$ cone structure on S^{3}, singular along $\Sigma=L$ and cone angle α.

- $C(\pi)$ is spherical (the double branched cover is a lens space).
- If L hyperbolic, then $C(\alpha)$ hyperbolic for $\alpha \in[0, \varepsilon)$. (by W. Thurston's hyperbolic Dehn filling).
- If L hyperbolic, then there exists $\frac{2 \pi}{3} \leq \alpha_{0}<\pi$ such that

$$
C(\alpha) \text { is }\left\{\begin{array}{l}
\text { hyperbolic if } \alpha<\alpha_{0} \\
\text { Euclidian if } \alpha=\alpha_{0} \\
\text { spherical if } \alpha_{0}<\alpha \leq \pi
\end{array}\right.
$$

Question: what happens for $\alpha>\pi$?

Cone angles $\geq \pi$

Theorem

If L is a hyperbolic two bridge link, $C\left(\alpha_{0}\right)$ Euclidean, then $C(\alpha)$ is spherical for $\alpha \in\left(\alpha_{0}, 2 \pi-\alpha_{0}\right)$.

- When $\alpha \rightarrow 2 \pi-\alpha_{0}, C(\alpha) \rightarrow$ spherical suspension of sphere with 4 cone points and the tunnels shrink to a point.

Cone angles $\geq \pi$

Theorem

If L is a hyperbolic two bridge link, $C\left(\alpha_{0}\right)$ Euclidean, then $C(\alpha)$ is spherical for $\alpha \in\left(\alpha_{0}, 2 \pi-\alpha_{0}\right)$.

- When $\alpha \rightarrow 2 \pi-\alpha_{0}, C(\alpha) \rightarrow$ spherical suspension of sphere with 4 cone points and the tunnels shrink to a point.
- When $\alpha \rightarrow 2 \pi-\alpha_{0}$

$$
\tau \rightarrow 0
$$

Cone angles $\geq \pi$

Theorem

If L is a hyperbolic two bridge link, $C\left(\alpha_{0}\right)$ Euclidean, then $C(\alpha)$ is spherical for $\alpha \in\left(\alpha_{0}, 2 \pi-\alpha_{0}\right)$.

- When $\alpha \rightarrow 2 \pi-\alpha_{0}, C(\alpha) \rightarrow$ spherical suspension of sphere with 4 cone points and the tunnels shrink to a point.
- When $\alpha \rightarrow 2 \pi-\alpha_{0}$

Cone angles $\geq \pi$

Theorem

If L is a hyperbolic two bridge link, $C\left(\alpha_{0}\right)$ Euclidean, then $C(\alpha)$ is spherical for $\alpha \in\left(\alpha_{0}, 2 \pi-\alpha_{0}\right)$.

- When $\alpha \rightarrow 2 \pi-\alpha_{0}, C(\alpha) \rightarrow$ spherical suspension of sphere with 4 cone points and the tunnels shrink to a point.
- When $\alpha \rightarrow 2 \pi-\alpha_{0}$

$$
\tau \rightarrow 0
$$

- When $\alpha \rightarrow \alpha_{0}$, rescale $\frac{1}{\sqrt{\alpha-\alpha_{0}}} C(\alpha) \rightarrow C\left(\alpha_{0}\right)$ Euclidean.

A tool for the proof: variety of representations

Want to deform incomplete metrics on $S^{3}-L$ that complete to $C(\alpha)$

$$
\begin{array}{rll}
\text { Dev: } & \widetilde{S^{3}-L} \rightarrow S^{3} & \text { (local isometry) } \\
\text { hol: } & \pi_{1}\left(S^{3}-L\right) \rightarrow S O(4) & \text { (representation) } \\
& \operatorname{Dev}(\gamma \cdot x)=\operatorname{hol}(\gamma)(\operatorname{Dev}(x))
\end{array}
$$

- Step 1 Study hom $\left(\pi_{1}\left(S^{3}-L\right), S O(4)\right) / S O(4)$
- Step 2 Show that some points in $\operatorname{hom}\left(\pi_{1}\left(S^{3}-L\right), S O(4)\right) / S O(4)$ give cone structures $C(\alpha)$.

A tool for the proof: variety of representations

Want to deform incomplete metrics on $S^{3}-L$ that complete to $C(\alpha)$

$$
\begin{array}{rll}
\text { Dev: } & \widetilde{S^{3}-L} \rightarrow S^{3} & \text { (local isometry) } \\
\text { hol: } & \pi_{1}\left(S^{3}-L\right) \rightarrow S O(4) & \text { (representation) } \\
& \operatorname{Dev}(\gamma \cdot x)=\operatorname{hol}(\gamma)(\operatorname{Dev}(x))
\end{array}
$$

- Step 1 Study hom $\left(\pi_{1}\left(S^{3}-L\right), S O(4)\right) / S O(4)$
- Step 2 Show that some points in $\operatorname{hom}\left(\pi_{1}\left(S^{3}-L\right), S O(4)\right) / S O(4)$ give cone structures $C(\alpha)$.

Easier to work with $\left\{\begin{array}{l}S \operatorname{Sin}(4)=\widetilde{S O(4)} \cong S^{3} \times S^{3} \\ S \operatorname{pin}(3)=\widetilde{S O(3)} \cong S^{3} \quad \text { (diagonal in } \operatorname{Spin}(4) \text {) }\end{array}\right.$

Spin(3) and Spin(4)

- $S^{3} \cong S U(2)$

$$
(a, b) \in S^{3} \subset \mathbf{C}^{2} \mapsto\left(\begin{array}{cc}
a & \frac{b}{c} \\
-\bar{b} & \bar{a}
\end{array}\right) \in S U(2)
$$

Spin(3) and Spin(4)

- $S^{3} \cong S U(2)$

$$
\begin{aligned}
(a, b) \in S^{3} \subset \mathbf{C}^{2} & \mapsto\left(\begin{array}{c}
a b \\
-\bar{b} \\
\bar{a}
\end{array}\right) \in S U(2) \\
S U(2) & \rightarrow S U(2) \\
x & \mapsto p x q^{-1} \quad \forall p, q \in S U(2)
\end{aligned}
$$

Spin(3) and Spin(4)

- $S^{3} \cong S U(2)$

$$
(a, b) \in S^{3} \subset \mathbf{C}^{2} \mapsto\left(\begin{array}{cc}
a & b \\
-\bar{b} & \frac{b}{a}
\end{array}\right) \in S U(2)
$$

$$
\text { - } \underline{S U(2) \times S U(2) \cong \operatorname{Spin}(4)} \quad \begin{array}{rll}
S U(2) & \rightarrow & S U(2) \\
x & \mapsto & p x q^{-1}
\end{array} \quad \forall p, q \in S U(2)
$$

- $\operatorname{Spin}(3) \cong S U(2) \subset S U(2) \times S U(2)$ diagonal (preserves $\operatorname{Re}(a)=0)$.

Spin(3) and Spin(4)

- $S^{3} \cong S U(2)$

$$
(a, b) \in S^{3} \subset \mathbf{C}^{2} \mapsto\left(\begin{array}{cc}
a & \frac{b}{a} \\
-\bar{b} & \frac{a}{a}
\end{array}\right) \in S U(2)
$$

- $S U(2) \times S U(2) \cong \operatorname{Spin}(4)$

$$
\begin{aligned}
S U(2) & \rightarrow S U(2) \\
x & \mapsto p x q^{-1}
\end{aligned} \quad \forall p, q \in S U(2)
$$

- $\operatorname{Spin}(3) \cong S U(2) \subset S U(2) \times S U(2)$ diagonal (preserves $\operatorname{Re}(a)=0)$.
- (p, q) is a rotation of angle $\theta \Longleftrightarrow \operatorname{tr}(p)=\operatorname{tr}(q)= \pm 2 \cos (\theta / 2)$.

$$
\left(\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}
\end{array}\right) \cdot\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) \cdot\left(\begin{array}{cc}
e^{i \beta} & 0 \\
0 & e^{-i \beta}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
e^{i(\alpha-\beta)} a \\
-e^{i(-\alpha-\beta)} & e^{i(\alpha+\beta)} b \\
e^{i(-\alpha+\beta)} \bar{a}
\end{array}\right)
$$

Spin(3) and Spin(4)

- $S^{3} \cong S U(2)$

$$
(a, b) \in S^{3} \subset \mathbf{C}^{2} \mapsto\left(\begin{array}{cc}
a & \frac{b}{a} \\
-\bar{b} & \frac{a}{a}
\end{array}\right) \in S U(2)
$$

- $S U(2) \times S U(2) \cong \operatorname{Spin}(4)$

$$
\begin{aligned}
S U(2) & \rightarrow S U(2) \\
x & \mapsto p x q^{-1}
\end{aligned} \quad \forall p, q \in S U(2)
$$

- $\operatorname{Spin}(3) \cong S U(2) \subset S U(2) \times S U(2)$ diagonal (preserves $\operatorname{Re}(a)=0)$.
- (p, q) is a rotation of angle $\theta \Longleftrightarrow \operatorname{tr}(p)=\operatorname{tr}(q)= \pm 2 \cos (\theta / 2)$.
- $X(\Gamma)=\operatorname{hom}(\Gamma, S U(2)) / S U(2), \Gamma=\pi_{1}\left(S^{3}-L\right)$

Holonomy reps. of $C(\alpha)-L$ viewed in:

$$
\left\{\left(\rho^{+}, \rho^{-}\right) \in X(\Gamma) \times X(\Gamma) \mid \operatorname{tr}\left(\rho^{+}(\mu)\right)=\operatorname{tr}\left(\rho^{-}(\mu)\right), \mu \text { meridian }\right\}
$$

Representations in $S U(2)$ with $\alpha \leq \pi$

- $X(\Gamma)=\operatorname{hom}(\Gamma, S U(2)) / S U(2)$
$\left\{\left(\rho^{+}, \rho^{-}\right) \in X(\Gamma) \times X(\Gamma) \mid \operatorname{tr}\left(\rho^{+}(\mu)\right)=\operatorname{tr}\left(\rho^{-}(\mu)\right), \mu\right.$ meridian $\}$

Representations in $S U(2)$ with $\alpha \leq \pi$

- $X(\Gamma)=\operatorname{hom}(\Gamma, S U(2)) / S U(2)$
$\left\{\left(\rho^{+}, \rho^{-}\right) \in X(\Gamma) \times X(\Gamma) \mid \operatorname{tr}\left(\rho^{+}(\mu)\right)=\operatorname{tr}\left(\rho^{-}(\mu)\right), \mu\right.$ meridian $\}$

- $X(\Gamma)$ well understood for $\alpha \leq \pi$.
- $C\left(\alpha_{0}\right)$ Euclidean $\Rightarrow \rho_{\alpha_{0}}^{+}=\rho_{\alpha_{0}}^{-} \cdot\left(\rho_{\alpha_{0}}^{+}, \rho_{\alpha_{0}}^{-}\right)$diagonal, in $\operatorname{Spin}(3)$. $\left(\rho_{\alpha_{0}}^{+}, \rho_{\alpha_{0}}^{-}\right)$comes from $\operatorname{Isom}\left(\mathbf{R}^{3}\right) \rightarrow S O(3)$

Representations in $S U(2)$ with $\alpha \leq \pi$

- $X(\Gamma)=\operatorname{hom}(\Gamma, S U(2)) / S U(2)$
$\left\{\left(\rho^{+}, \rho^{-}\right) \in X(\Gamma) \times X(\Gamma) \mid \operatorname{tr}\left(\rho^{+}(\mu)\right)=\operatorname{tr}\left(\rho^{-}(\mu)\right), \mu\right.$ meridian $\}$

- $C\left(\alpha_{0}\right)$ Euclidean $\Rightarrow \rho_{\alpha_{0}}^{+}=\rho_{\alpha_{0}}^{-} \cdot\left(\rho_{\alpha_{0}}^{+}, \rho_{\alpha_{0}}^{-}\right)$diagonal, in $\operatorname{Spin}(3)$. $\left(\rho_{\alpha_{0}}^{+}, \rho_{\alpha_{0}}^{-}\right)$comes from $\operatorname{Isom}\left(\mathbf{R}^{3}\right) \rightarrow S O(3)$
- How to find reps. in $\left(\pi, 2 \pi-\alpha_{0}\right)$?

Representations in $S U(2)$ with $\alpha \leq \pi$

- $X(\Gamma)=\operatorname{hom}(\Gamma, S U(2)) / S U(2)$
$\left\{\left(\rho^{+}, \rho^{-}\right) \in X(\Gamma) \times X(\Gamma) \mid \operatorname{tr}\left(\rho^{+}(\mu)\right)=\operatorname{tr}\left(\rho^{-}(\mu)\right), \mu\right.$ meridian $\}$

- How to find reps. in $\left(\pi, 2 \pi-\alpha_{0}\right)$?
- reach $\alpha=\pi+\varepsilon$ for some $\varepsilon>0$ (local paramet./rigidity)
- $\left(\rho_{\pi+\varepsilon}^{+}, \rho_{\pi+\varepsilon}^{-}\right)$and ($\left.\rho_{\pi-\varepsilon}^{+}, \rho_{\pi-\varepsilon}^{-}\right)$project to the same rep. in $S O(4)$.
\Rightarrow Can complete the ellipse symmetrically.

Representations in $S U(2)$ with $\alpha>\pi$

Using the structure of $X(\Gamma)$ when $\alpha \leq \pi$ and the symmetry:

Representations in $S U(2)$ with $\alpha>\pi$

Using the structure of $X(\Gamma)$ when $\alpha \leq \pi$ and the symmetry:

- $\left(\rho_{\alpha}^{+}, \rho_{\alpha}^{-}\right)= \pm\left(\rho_{2 \pi-\alpha}^{+}, \rho_{2 \pi-\alpha}^{-}\right)$
i.e. $\left(\rho_{\alpha}^{+}, \rho_{\alpha}^{-}\right)$and $\left(\rho_{2 \pi-\alpha}^{+}, \rho_{2 \pi-\alpha}^{-}\right)$induce the same rep. in $S O(4)$.

Notice that $\operatorname{tr}\left(\rho_{\alpha}^{ \pm}(\mu)\right)= \pm 2 \cos (\alpha / 2)$ local parameter at $\alpha=\pi$. thus the angle $\alpha>\pi$ makes sense.

Representations in $S U(2)$ with $\alpha>\pi$

Using the structure of $X(\Gamma)$ when $\alpha \leq \pi$ and the symmetry:

Next step: why those reps. correspond to spherical structures?

Representations in $S U(2)$ with $\alpha>\pi$

Using the structure of $X(\Gamma)$ when $\alpha \leq \pi$ and the symmetry:

Next step: why those reps. correspond to spherical structures?

- $C\left(\alpha_{0}\right)$ Euclidean: $\rho_{\alpha_{0}}^{+}=\rho_{\alpha_{0}}^{-}$(in $\operatorname{Spin}(3)$)
- $\rho_{2 \pi-\alpha_{0}}^{+}=\rho_{2 \pi-\alpha_{0}}^{-}$(also in $\left.\operatorname{Spin}(3)\right)$. Also want to show:

$$
\lim _{\alpha \rightarrow 2 \pi-\alpha_{0}} C(\alpha)=\text { spherical suspension of } S^{2} \text { with } 4 \text { cone points }
$$

Realizing reps. as holonomy of cone manifolds

$A=\left\{\begin{array}{l|l}\alpha \in\left[\pi, 2 \pi-\alpha_{0}\right) & \begin{array}{l}\left(\rho_{\alpha}^{+}, \rho_{\alpha}^{-}\right) \in X(\Gamma) \times X(\Gamma) \text { holonmy of a sph. } \\ \text { metric on } S^{3}-L \text { that completes to } C(\alpha)\end{array}\end{array}\right\}$

- A is open (deformations of holonomy \Rightarrow defs. of structure)

Realizing reps. as holonomy of cone manifolds

$A=\left\{\begin{array}{l|l}\alpha \in\left[\pi, 2 \pi-\alpha_{0}\right) & \begin{array}{l}\left(\rho_{\alpha}^{+}, \rho_{\alpha}^{-}\right) \in X(\Gamma) \times X(\Gamma) \text { holonmy of a sph. } \\ \text { metric on } S^{3}-L \text { that completes to } C(\alpha)\end{array}\end{array}\right\}$

- A is open (deformations of holonomy \Rightarrow defs. of structure)
- To show A is closed take $\alpha_{n} \in A, \alpha_{n} \nearrow \alpha_{\infty}$ and look at $\lim C\left(\alpha_{n}\right)=$?

Need to bound:

1. bound above the diameter of $C\left(\alpha_{n}\right)$
2. radius of an embedded metric tube of $\Sigma \subset C\left(\alpha_{n}\right)(\geq r>0)$
3. injectivity radius on $C\left(\alpha_{n}\right)-N_{r}(\Sigma)(\geq \varepsilon>0)$

With those bounds, $\Longrightarrow \lim C\left(\alpha_{n}\right)=C\left(\alpha_{\infty}\right)$ and $\alpha_{\infty} \in A$.

Finding bounds

$\alpha_{n} \in A, \alpha_{n} \nearrow \alpha_{\infty}$ and look at $\lim C\left(\alpha_{n}\right)=$?

Finding bounds

$\alpha_{n} \in A, \alpha_{n} \nearrow \alpha_{\infty}$ and look at $\lim C\left(\alpha_{n}\right)=$?

- $\operatorname{diam}\left(C\left(\alpha_{n}\right)\right) \leq \pi$ bc. it is an Alexandrov space with curv. ≥ 1.

Finding bounds
$\alpha_{n} \in A, \alpha_{n} \nearrow \alpha_{\infty}$ and look at $\lim C\left(\alpha_{n}\right)=$?

- $\operatorname{diam}\left(C\left(\alpha_{n}\right)\right) \leq \pi$ bc. it is an Alexandrov space with curv. ≥ 1.
- $r(\alpha)=\sup \left\{\delta>0 \mid N_{\delta}(\Sigma) \subset C(\alpha)\right.$ embedded metric tube $\}$

Need to bound $r(\alpha)>0$ uniformly for $\pi \leq \alpha \leq c<2 \pi-\alpha_{0}$ (i.e. the singular locus does not cross with itself before $2 \pi-\alpha_{0}$).

- $\operatorname{vol}(C(\alpha)) \leq 2 \pi r(\alpha)+2 \pi(\alpha-\pi)$
- $\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi)$

Hence $r(\alpha) \geq \frac{1}{2 \pi} \operatorname{vol}(C(2 \pi-\alpha))$

Dirichlet domain

- Proof of $\operatorname{vol}(C(\alpha)) \leq 2 \pi r(\alpha)+2 \pi(\alpha-\pi)$

$$
r=r(\alpha)=\sup \left\{\delta>0 \mid N_{\delta}(\Sigma) \subset C(\alpha) \text { embedded metric tube }\right\}
$$

σ segment of length $2 r$ perpendicular to Σ.

Dirichlet domain

- Proof of $\operatorname{vol}(C(\alpha)) \leq 2 \pi r(\alpha)+2 \pi(\alpha-\pi)$
σ segment of length $2 r$ perpendicular to Σ.

$$
D(\sigma)=\{x \in C(\alpha) \mid x \text { has a unique minimizing segment to } \sigma\}
$$

- $D(\sigma)$ not convex but star-shaped!

Dirichlet domain

- Proof of $\operatorname{vol}(C(\alpha)) \leq 2 \pi r(\alpha)+2 \pi(\alpha-\pi)$
σ segment of length $2 r$ perpendicular to Σ.

$$
D(\sigma)=\{x \in C(\alpha) \mid x \text { has a unique minimizing segment to } \sigma\}
$$

- $D(\sigma) \subset$ a lens of width $2 r$ and 4 lenses of width $\frac{\alpha-\pi}{2}$ in S^{3}.

vol(lens) $=\pi \cdot$ width(lens)

Volume and symmetry

- Proof of $\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi) \quad \forall \alpha \in\left[\pi, 2 \pi-\alpha_{0}\right)$

$$
l(\alpha)=\text { total length of } \Sigma \subset C(\alpha)
$$

- Schläfli's formula: $d \operatorname{vol} C(\alpha)=\frac{1}{2} l(\alpha) d \alpha$

$$
\operatorname{vol} C(\alpha)=\int_{\alpha_{0}}^{\alpha} \frac{1}{2} l(\theta) d \theta
$$

Thus vol $C(\alpha)$ increases whith α.

Volume and symmetry

- Proof of $\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi) \quad \forall \alpha \in\left[\pi, 2 \pi-\alpha_{0}\right)$

$$
l(\alpha)=\text { total length of } \Sigma \subset C(\alpha)
$$

- Schläfli's formula: $d \operatorname{vol} C(\alpha)=\frac{1}{2} l(\alpha) d \alpha$

$$
\operatorname{vol} C(\alpha)=\int_{\alpha_{0}}^{\alpha} \frac{1}{2} l(\theta) d \theta
$$

- By symmetry: $\quad l(\alpha)=4 \pi-l(2 \pi-\alpha)$

Volume and symmetry

- Proof of $\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi) \quad \forall \alpha \in\left[\pi, 2 \pi-\alpha_{0}\right)$

$$
l(\alpha)=\text { total length of } \Sigma \subset C(\alpha)
$$

- Schläfli's formula: $\operatorname{vol} C(\alpha)=\int_{\alpha_{0}}^{\alpha} \frac{1}{2} l(\theta) d \theta$
- By symmetry: $\quad l(\alpha)=4 \pi-l(2 \pi-\alpha)$

$$
\operatorname{vol}(C(\alpha))=\int_{\alpha_{0}}^{\pi} \frac{1}{2} l(\theta) d \theta+\int_{\pi}^{\alpha} \frac{1}{2} l(\theta) d \theta
$$

Volume and symmetry

- Proof of $\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi) \quad \forall \alpha \in\left[\pi, 2 \pi-\alpha_{0}\right)$

$$
l(\alpha)=\text { total length of } \Sigma \subset C(\alpha)
$$

- Schläfli's formula: $\operatorname{vol} C(\alpha)=\int_{\alpha_{0}}^{\alpha} \frac{1}{2} l(\theta) d \theta$
- By symmetry: $\quad l(\alpha)=4 \pi-l(2 \pi-\alpha)$

$$
\begin{aligned}
\operatorname{vol}(C(\alpha)) & =\int_{\alpha_{0}}^{\pi} \frac{1}{2} l(\theta) d \theta+\int_{\pi}^{\alpha} \frac{1}{2} l(\theta) d \theta \\
& =\int_{\alpha_{0}}^{\pi} \frac{1}{2} l(\theta) d \theta+\int_{\pi}^{\alpha} 4 \pi \frac{1}{2} d \theta+\int_{\pi}^{2 \pi-\alpha} \frac{1}{2} l(\theta) d \theta
\end{aligned}
$$

Volume and symmetry

- Proof of $\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi) \quad \forall \alpha \in\left[\pi, 2 \pi-\alpha_{0}\right)$

$$
l(\alpha)=\text { total length of } \Sigma \subset C(\alpha)
$$

- Schläfli's formula: vol $C(\alpha)=\int_{\alpha_{0}}^{\alpha} \frac{1}{2} l(\theta) d \theta$
- By symmetry: $\quad l(\alpha)=4 \pi-l(2 \pi-\alpha)$

$$
\begin{aligned}
\operatorname{vol}(C(\alpha)) & =\int_{\alpha_{0}}^{\pi} \frac{1}{2} l(\theta) d \theta+\int_{\pi}^{\alpha} \frac{1}{2} l(\theta) d \theta \\
& =\int_{\alpha_{0}}^{\pi} \frac{1}{2} l(\theta) d \theta+\int_{\pi}^{\alpha} 4 \pi \frac{1}{2} d \theta+\int_{\pi}^{2 \pi-\alpha} \frac{1}{2} l(\theta) d \theta \\
& =\int_{\alpha_{0}}^{2 \pi-\alpha} \frac{1}{2} l(\theta) d \theta+(\alpha-\pi) 2 \pi
\end{aligned}
$$

More bounds (final)

$$
\left.\begin{array}{l}
\operatorname{vol}(C(\alpha)) \leq 2 \pi r(\alpha)+2 \pi(\alpha-\pi) \\
\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi)
\end{array}\right\} \Rightarrow r(\alpha) \geq \frac{\operatorname{vol}(C(2 \pi-\alpha))}{2 \pi} .
$$

Remarks

- $\operatorname{vol}\left(C\left(\alpha_{0}\right)\right)=0$. Thus $r\left(2 \pi-\alpha_{0}\right) \geq 0$ trivial bound.
- $2 \pi(\alpha-\pi)=\operatorname{vol}\left(\right.$ spherical suspension of $S^{2}(\alpha, \alpha, \alpha, \alpha)$) In particular $\operatorname{vol}\left(C\left(2 \pi-\alpha_{0}\right)\right)=$ vol. spherical suspension

$$
\left.\begin{array}{l}
\operatorname{vol}(C(\alpha)) \leq 2 \pi r(\alpha)+2 \pi(\alpha-\pi) \\
\operatorname{vol}(C(\alpha))=\operatorname{vol}(C(2 \pi-\alpha))+2 \pi(\alpha-\pi)
\end{array}\right\} \Rightarrow r(\alpha) \geq \frac{\operatorname{vol}(C(2 \pi-\alpha))}{2 \pi} .
$$

Remarks

- $\operatorname{vol}\left(C\left(\alpha_{0}\right)\right)=0$. Thus $r\left(2 \pi-\alpha_{0}\right) \geq 0$ trivial bound.
- $2 \pi(\alpha-\pi)=\operatorname{vol}\left(\right.$ spherical suspension of $S^{2}(\alpha, \alpha, \alpha, \alpha)$) In particular $\operatorname{vol}\left(C\left(2 \pi-\alpha_{0}\right)\right)=$ vol. spherical suspension
- The injectivity radius in $C(\alpha)-N_{r}(\Sigma)$ is bounded because:

The crossing of Σ when $\alpha \rightarrow 2 \pi-\alpha_{0}$

- The length of tunnels $\left|\tau_{i}\right| \rightarrow 0$ as $\alpha \rightarrow 2 \pi-\alpha_{0}$, by symmetry of the variety of reps.

The crossing of Σ when $\alpha \rightarrow 2 \pi-\alpha_{0}$

- The length of tunnels $\left|\tau_{i}\right| \rightarrow 0$ as $\alpha \rightarrow 2 \pi-\alpha_{0}$, by symmetry of the variety of reps.
- We construct the metric on $C\left(2 \pi-\alpha_{0}\right)$ from the tangles and we deform them decreasing α explicitely.

$\alpha=2 \pi-\alpha_{0}$

$\alpha<2 \pi-\alpha_{0}$

The crossing of Σ when $\alpha \rightarrow 2 \pi-\alpha_{0}$

- We construct the metric on $C\left(2 \pi-\alpha_{0}\right)$ from the tangles and we deform them decreasing α explicitely.

$\alpha=2 \pi-\alpha_{0}$

$\alpha<2 \pi-\alpha_{0}$
- At $2 \pi-\alpha_{0}$ angle of crossing is $\neq 0$ (bc. $\left(\rho_{\alpha_{0}}^{+}, \rho_{\alpha_{0}}^{-}\right)$non abelian)

The crossing of Σ when $\alpha \rightarrow 2 \pi-\alpha_{0}$

- We construct the metric on $C\left(2 \pi-\alpha_{0}\right)$ from the tangles and we deform them decreasing α explicitely.

$\alpha=2 \pi-\alpha_{0}$

$\alpha<2 \pi-\alpha_{0}$
- At $2 \pi-\alpha_{0}$ angle of crossing is $\neq 0$ (bc. $\left(\rho_{\alpha_{0}}^{+}, \rho_{\alpha_{0}}^{-}\right)$non abelian)
- Why this deformation is the same as the previous one?

By the same volume calculations, can decrease α to π and apply de Rham's global rigidity for orbifolds

Torus links

Cone structures described by the basis of the Seifert fibration.

Torus links

Cone structures described by the basis of the Seifert fibration.

$$
\begin{aligned}
& L=t(2, n), n \text { odd } \\
& \text { (i.e. } L \text { a knot). }
\end{aligned} \Rightarrow C(\alpha) \begin{cases}P S L_{2}(\mathbf{R}) & \text { for } \alpha \in\left(0, \pi-\frac{2 \pi}{n}\right) \\
N i l & \text { for } \alpha=\frac{2 \pi}{n} \\
\text { spherical } & \text { for } \alpha \in\left(\pi-\frac{2 \pi}{n}, \pi+\frac{2 \pi}{n}\right)\end{cases}
$$

Torus links

Cone structures described by the basis of the Seifert fibration.

$$
\begin{aligned}
& L=t(2, n), n \text { odd } \\
& \text { (i.e. } L \text { a knot). }
\end{aligned} \Rightarrow C(\alpha) \begin{cases}P S L_{2}(\mathbf{R}) & \text { for } \alpha \in\left(0, \pi-\frac{2 \pi}{n}\right) \\
\text { Nil } & \text { for } \alpha=\frac{2 \pi}{n} \\
\text { spherical } & \text { for } \alpha \in\left(\pi-\frac{2 \pi}{n}, \pi+\frac{2 \pi}{n}\right)\end{cases}
$$

$$
\text { When } \alpha \rightarrow \pi+\frac{2 \pi}{n} \Rightarrow\left\{\begin{array}{l}
\Sigma \text { intersectes itself tangentially } \\
\text { and get a round circle with cone angle } \frac{4 \pi}{n}
\end{array}\right.
$$

- When $n=3$

Addendum

During my talk I forgot to mention that A. Mednykh and A. Rasskazov had obtained the same result for the fi gure eigth knot. Mednykh was attending the talk and complained about my omission.
The referee of my paper let me know about that (so I should have mentioned it), but I was not aware that this paper was available on the web. Google found the preprint in http://cis.paisley.ac.uk/research/reports/tr22.zip

The paper of my talk can be found in http://mat.uab.es/~porti/twobridge040127.pdf and it just appeared in Kobe J. of Math. 21 (2004), 61-70

