Finite groups acting on homology spheres

Mattia Mecchia Joint work with Bruno Zimmermann

Conference on Geometry and Topology of 3-Manifolds Trieste, June 2005 **Problem:** Which finite groups admit actions on integer and \mathbb{Z}_2 -homology 3-spheres? (arbitrary action, not necessarily free)

Classical cases:

- actions on S^3
- free actions on integer homology 3-spheres

Some relations with knot theory:

- a manifold obtained by p/q-surgery on a knot in S^3 , with p odd, is a \mathbb{Z}_2 -homology 3-sphere
- the 2-fold cyclic branched covering of a knot in S^3 is a \mathbb{Z}_2 -homology 3-sphere

1. Hyperbolic 2-fold branched coverings of knots and finite 2-groups acting on \mathbb{Z}_2 -homology 3-spheres

Problem: How many inequivalent knots can have the same 2-fold branched covering?

In general the number of inequivalent knots with the same 2-fold cyclic branched covering can be arbitrary large (in [Montesinos (1976)] examples using Montesinos knots)

We consider the problem where the covering manifolds are hyperbolic.

Remark The number of the inequivalent knots with the same hyperbolic 2-fold branched covering M is bounded by the number of conjugacy classes of the involutions with nonempty fixed point set in the Sylow 2-subgroup of $Iso^+(M)$.

Problem: How many inequivalent knots can have the same hyperbolic 2-fold branched covering?

becomes

Problem: How many conjugacy classes of involutions with nonempty fixed point set can be contained in a finite 2-group acting on a \mathbb{Z}_2 -homology 3-sphere?

[Reni 2000] using Finite Group Theory and low dimensional methods

Theorem 1. Let *S* be a finite 2-group acting on a \mathbb{Z}_2 -homology 3-sphere smoothly and orientation presevengly. Then one of the following cases occurs.

- *S* is cyclic, dihedral, quasidihedral or a quaternion group;
- S contains with index at most two the centralizer C_Sh of an involution h with nonempty fixed point set. The group C_Sh is a subgroup of a semidirect product Z₂ × (Z_{2ⁿ} × Z_{2^m})

Theorem 2. *S* has at most nine conjugacy classes of involutions with nonempty fixed point set.

Corollary. There are at most nine inequivalent knots with the same hyperbolic 2-fold branched covering.

Different approach to analyze the 2-groups acting on $\mathbb{Z}_2\text{-homology 3-spheres}$

- Dotzel and Hamrick (1981) proved that any finite p-group acting on a Z_p-homology n-sphere has a representation as a group of isometries of Sⁿ (this representation preserves the dimension of the global fixed point set of any subgroup).
- The finite subgroups of SO(4) are classified (see [Du Val(1974)]).

Complete solution of the topological problem

- We have at most nine inequivalent knots with the same hyperbolic 2-fold branched covering. ([Reni 2000])
- There exist examples of hyperbolic manifolds that are the common 2-fold branched covering of nine inequivalent knots. ([Akio Kawauchi (preprint 2005)].)
- The link version of the problem was completely solved ([M. and Reni 2002],[M. and Zimmermann 2004]).

2. Finite nonsolvable groups acting on \mathbb{Z}_2 -homology 3-spheres

Preliminary definitions

- if G is a finite group, $\mathcal{O}(G)$ is the maximal normal subgroup of odd order of G
- SL(2,q) is the special linear group of 2 × 2 matrices of determinant one over the finite field with q element (q = pⁿ a prime power)
- PSL(2,q) = SL(2,q)/Z(SL(2,q)) is the projective linear group (simple for $q \ge 4$)
- Â₇ is the unique perfect central extension of the alternating group A₇ with center of order two

• for q and q' odd, $SL(2,q) \times_{\mathbb{Z}_2} SL(2,q')$ is the central product of the two groups with the two central involutions identified

Theorem 3. [M. and Zimmermann (2004)]

Let *G* be a finite group of orientation preserving diffeomorphisms of a \mathbb{Z}_2 -homology 3-sphere. If *G* is not solvable, then *G* has a normal subgroup *N* containing $\mathcal{O}(G)$ such that the factor group $N/\mathcal{O}(G)$ is isomorphic to one of the following groups:

where *C* is solvable with a unique involution, and *q* and *q'* are odd prime powers greater than four. Moreover the factor group G/N is abelian or a 2-fold extension of an abelian group. **Theorem 4.** If *G* is a nonabelian simple finite group of orientation preserving diffeomorphisms of a \mathbb{Z}_2 -homology 3-sphere then *G* is isomorphic to PSL(2,q) with *q* an odd prime powers greater than four.

(a shorter proof in M.and Zimmermann - preprint 2004)

Theorem 5. [Reni and Zimmermann (2001-2004)] Let G be a finite group of orientation preserving diffeomorphisms of an integer homology 3-sphere. Then either G is solvable, or G is isomorphic to one of the following groups.

\mathbb{A}_5 or $\mathbb{A}_5 \times \mathbb{Z}_2$, $\mathbb{A}_5^* \times_{\mathbb{Z}_2} C$, $\mathbb{A}_5^* \times_{\mathbb{Z}_2} \mathbb{A}_5^*$

where *C* is solvable with a unique involution. Each involution of \mathbb{A}_5 has nonempty fixed point set, and each of the factors \mathbb{A}_5^* and *C* acts freely. $(\mathbb{A}_5^* \cong SL(2,5))$ is the binary dodecaedral group)

10

Problem: Which finite (simple) groups of list in Theorem 3 really act on a \mathbb{Z}_2 -homology 3-sphere?

Zimmermann produces (using computer calculations with GAP) examples of \mathbb{Z}_2 -homology 3-spheres with

- PSL(2, q)-actions for various small values of q (preprint 2004)
- SL(2,q)-actions for various small values of q
- actions of some odd order groups which can not act on any integer homology 3-sphere

Conjecture:For all q odd, the group PSL(2,q) (resp. SL(2,q)) acts on a \mathbb{Z}_2 -homology 3-sphere. **Conjecture:**All finite groups of odd order act on a \mathbb{Z}_2 -homology 3-sphere.

What about $\widehat{\mathbb{A}}_7$? What about $SL(2,q) \times_{\mathbb{Z}_2} SL(2,q')$?

Sketch of the proof of Theorem 3

(Further motivation: these methods have been applied to study the isometry groups of the n-fold cyclic branched coverings of hyperbolic 2-bridge knots [Reni and Vesnin (2001)])

Let G be a finite group acting on a \mathbb{Z}_2 -homology 3-sphere.

Basic facts:

- G has sectional 2-rank smaller or equal to four,
 i.e. each 2-subgroup of G is generated by at most four elements.
- 2. if *t* is an involution of *G* with nonempty fixed point set $C_G(t)$ is a subgroup of $\mathbb{Z}_2 \ltimes (\mathbb{Z}_a \times \mathbb{Z}_b)$.

The quasisimple case

A group Q is quasisimple if it is perfect (the abelianized group is trivial) and Q/Z(Q) is a nonabelian simple group.

Lemma 1. If *G* is quasisimple and *G* contains an involution with nonempty fixed point set then G/Z(G) has only one conjugacy class of involutions.

Proof of Lemma 1

- (sectional 2-rank of $G \le 4$) \Rightarrow (sectional 2-rank of $G/Z(G) \le 4$)
- we apply the Gorenstein-Harada classification of finite simple groups of sectional 2-rank at most four to obtain a list of possibilities for G/Z(G)
- we exclude the groups in the Gorenstein-Harada list that have two conjugacy classes of involutions analyzing the centralizer in the groups of the involutions (with nonempty fixed point set)

Lemma 2. If *G* is quasisimple G/Z(G) is isomorphic to PSL(2,q), for an odd prime power *q* greater than four, or to A_7 .

Proof of Lemma 2

- by topological methods (except for one case) we deduce from Lemma 1 that the Sylow 2-subgroups of G/Z(G) are dihedral
- we apply Gorenstein-Walter Theorem that classifies the simple groups with dihedral Sylow 2subgroups

Remark: for simple groups we are able now to obtain that the Sylow 2-groups are dihedral avoiding the Classification of Simple Groups.

Lemma 3. If *G* is quasisimple and $\mathcal{O}(G)$ is trivial. Then *G* is isomorphic to one of the following groups, for an odd prime power *q* greater than four:

 $\mathsf{PSL}(2,q), \quad \mathsf{SL}(2,q) \quad or \quad \widehat{\mathbb{A}}_7.$

Each involution in PSL(2,q) has nonemtpy connected fixed point set, the unique involutions of SL(2,q) and $\widehat{\mathbb{A}}_7$ act freely.

Remark: we are able to exclude \mathbb{A}_7 but its extension $\widehat{\mathbb{A}}_7$ remains

The general case

A group *E* is semisimple if it is perfect and the factor group E/Z(E) is a direct product of nonabelian simple groups. A semisimple group is a central product of quasisimple groups.

 $(SL(2,q) \times_{\mathbb{Z}_2} SL(2,q')$ are examples of semisimple groups)

Any finite group has a unique maximal semisimple normal subgroup E(G) (may be trivial.)

First possibility: E(G) is not trivial (*G* is not solvable)

Starting from Lemma 3 we prove that *G* is isomorphic to one of the nonsolvable groups presented in Theorem 3

Second possibility: E(G) is trivial

In this case we prove that the group G is solvable. The key lemma is the following:

Lemma 4. If *G* has a normal 2-subgroup containing an involution with nonempty connected fixed point set, then *G* is solvable.

(the proof is based manly on topological arguments)

3. Nonsolvable groups acting on integer homology 4-spheres

Proposition 1. A finite 2-group admitting an action on a \mathbb{Z}_2 -homology 4-sphere has rank at most four.

Proof uses Dotzel-Hamrick's result.

Theorem 6. (for simple groups) *M.* and Zimmermann (*Preprint 2004*)

The only finite nonabelian simple groups admitting an action on a integer homology 4-sphere are the alternating or linear fractional groups $\mathbb{A}_5 \cong \mathsf{PSL}(2,5)$ and $\mathbb{A}_6 \cong \mathsf{PSL}(2,9)$.