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Introduction to Ricci flow

Carlo Sinestrari

Dipartimento di Matematica, Università di Roma “Tor Vergata”
e-mail: sinestra@mat.uniroma2.it

These are informal notes which are meant to be a support for the lectures of the
“Summer school on geometry and topology of 3-manifolds”, to be held at ICTP, Trieste,
6-10 June 2005. We have attempted here to summarize the results from a vast area of
research; this might have led to somce inaccuracies in the exposition. The interested
reader is encouraged to look at the references in the bibliography for a comprehensive
treatment of the subject.

1 The Ricci flow

Let Mn be an n-dimensional riemannian manifold with a metric g0. The Ricci flow
of (Mn, g0) is a time-dependent family g(t) (with t ≥ 0) of metrics on Mn satisfying
g(0) = g0 and evolving according to the equation

∂

∂t
g(t) = −2Ricg(t) (1.1)

where Ricg(t) is the Ricci curvature tensor associated with the metric g(t). As we will
see later, the Ricci flow is a parabolic system of partial differential equations which has a
solution at least in some finite time interval t ∈ [0, T [ . The choice of sign in the right-hand
side is essential for this property, since otherwise in general the flow would not have a
solution for positive times.

The Ricci flow was introduced by R. Hamilton in [6]. To explain the interest of the
flow, let us recall the main result of that paper.

Theorem 1.1 Any closed three-dimensional riemannian manifold with positive Ricci cur-
vature is diffeomorphic to a quotient of the sphere S3 under a finite group of isometries.

To prove this result, Hamilton considered the evolution of the metric under the Ricci
flow and showed that it converges to a metric of constant positive sectional curvature.
More precisely, there is a finite time T > 0 at which the flow becomes singular and the
manifold “shrinks to a point” (that is, the metric tends to zero and the curvature becomes
unbounded everywhere); however, by choosing an appropriate rescaling factor ρ(t), the
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normalized metric ρ(t)g(t) converges, as t→ T , to a metric of positive constant sectional
curvature. On the other hand, it is known that a manifold with such a metric must be
S3 or one of its quotients.

A remarkable feature of Hamilton’s proof was the use of techniques from the theory of
parabolic PDEs, like the maximum principle, to solve a geometric problem. This approach
was partly inspired by a previous paper by Eels and Sampson [4] where they used the
heat equation to find harmonic maps between two given riemannian manifolds.

In the following years, many other results were obtained by a similar technique. On
one hand, there was a detailed study of the Ricci flow in dimension 2, showing that every
metric on a closed surface converges under Ricci flow to a metric of constant curvature,
thus providing an alternative approach to the uniformization theorem. On the other
hand, convergence results to quotients of the sphere in dimension greater than three were
obtained under suitable conditions on the initial metric (see [1, 9] and the references
therein).

After some time, Hamilton started pursuing the more ambitious goal of proving the
Thurston geometrization conjecture using Ricci flow. As it is well known, this conjecture
provides a complete classification of the closed three-dimensional manifolds, and includes
in particular the

Poincaré conjecture: Every closed simply connected three-dimensional manifold is
homeomorphic to the sphere S3.

Hamilton’s program consisted in showing that the Ricci flow on a general closed three-
manifold converges to one of the canonical structures described by Thurston. However,
a more subtle technique is needed with respect to the results described before. Namely,
the Ricci flow on a general three manifold may develop singularities before the metric has
converged to one of the desired limits. Hamilton’s idea in this case is to define a flow with
surgeries: the Ricci flow is stopped shortly before the singular time, the regions with large
curvature are removed by a surgery and replaced by more regular ones, and the flow is
restarted. To define this procedure rigorously it is necessary to have a detailed knowledge
of the possible structure of singularities.

In spite of many relevant results, some crucial parts of Hamilton’s program remained
unsolved until recently. Between 2002 and 2003 G. Perelman posted on the web three
papers which introduce several new ideas for the analysis of Ricci flow and give a proof
of Thurston conjecture [13, 14, 15]. The details of the proof are still being checked by the
experts in the field; however, the main ideas of the papers are by now widely understood.

In these lectures we will present the basic properties of Ricci flow and the main results
about the analysis of singularities which are used in the proof of the geometrization
conjecture. The Ricci flow with surgeries and the proof of the conjecture will be the
object of the lectures by Bessieres and Besson next week.

2 Examples

Some explicit solutions of the Ricci flow are presented in [9, §2] and in [2, §2]. Easy
examples are given by the spaces with constant curvature, which evolve by homotheties.
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A sphere shrinks to a point in finite time, while a hyperbolic space of constant negative
curvature expands more and more as t→∞, while the curvature tends to zero.

Other interesting examples are the so–called solitons. A steady Ricci soliton is a
manifold Mn (not necessarily closed) with a metric g̃ which is a constant solution of
the Ricci flow up to a diffeomorphism. By this we mean that there exists a family of
diffeomorphism φt ofMn such that, if we set g(t) = φ∗t (g̃) (the pull-back metric under the
diffeomorphism) then g(t) solves the Ricci flow. If the diffeomorphisms are generated by
the gradient of a function f , then the solution is called a gradient soliton; this is equivalent
to requiring that the metric satisfies Ricg̃ + D2f = 0. In general, a metric g̃ satisfying
Ricg̃ + D2f = ρg̃ for some constant ρ is called a expanding (resp. shrinking) gradient
Ricci soliton if ρ < 0 (resp. if ρ > 0). In this case, the Ricci flow is given by composing
diffeomorphism and homotheties.

An explicit example of steady gradient soliton in dimension 2 is the so-called cigar,
which is IR2 with the metric

ds2 =
dx2 + dy2

1 + x2 + y2

(see [2, §2.2] for the details).
Another case where the Ricci flow has a special structure is the one of a homogeneous

metric (like Thurston’s three-dimensional model geometries). Here the Ricci flow reduces
to a system of ordinary differential equations (see [2, §1.4-1.7] and the references therein).

Particularly important for our purposes are the examples of “intuitive solutions” in [9,
§3]. Consider the case of a manifold (of dimension at least three) consisting approximately
of two big spheres Sn joined by a thin tube (or “neck”) Sn−1× [a, b]. One expects that the
tube shrinks at least in some part before the two spheres do the same. Such a behaviour
is called neckpinch. A solution with these properties has been constructed rigorously in
a recent paper (see [2, §2.5]). Hamilton’s conjecture (confirmed by Perelman’s results)
was that, intuitively speaking, the neckpinch is the only possible singular behaviour in
the three-dimensional Ricci flow, in addition to the shrinking behaviour described after
Theorem 1.1. When a neckpinch singularity forms, it is possible to remove the singular
part by a surgery procedure such that the possible change of topology of the manifold
is controlled. In this notes we will not deal with the surgery construction, but we will
describe instead parts of the argument which gives the classification of the possible singular
behaviours.

3 Short time existence

When written in coordinates, the Ricci flow is a parabolic system of partial differential
equations for the components of the metric. There exists a standard theory giving short
time existence of solutions for systems which are strictly parabolic; however, the Ricci
flow does not completely fit into this framework since for this system the parabolicity is
not strict. Nevertheless, using the special structure of the equations, Hamilton was able
to prove short time existence for the Ricci flow, as shown by the next result [6].
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Theorem 3.1 The Ricci flow on any closed manifold has a unique solution in a time
interval [0, t0) for some t0 > 0.

Shortly afterwards, De Turck gave a simpler proof of this result, based on an equivalent
formulation of the flow where the parabolicity becomes strict. For more details about these
matters, one can consult [6, §4-6], [9, §6], [2, §3.1-3.4]. Let us point out that, while the
flow admits a solution for positive times, it is in general not be solvable for negative times
(this is a typical feature of parabolic problems).

As we have already seen, the Ricci flow in some cases exists only in a finite time
interval. The next theorem (proved in [9, §8]) shows that, if this is the case, then the
curvature necessarily becomes unbounded.

Theorem 3.2 Each solution of the Ricci flow on a compact manifold can be extended to
a maximal time interval [0, T ), with T ≤ +∞. If T is finite, then necessarily

lim sup
t→T

M(t) = +∞,

where M(t) is the maximum of the norm of the Riemann curvature tensor at time t.

We describe the above behaviour by saying that the flow becomes singular at time T .

4 Evolution of curvature, preservation of positivity

As the metric on a manifold evolves by Ricci flow, the Riemann curvature tensor also
evolves and satisfies an equation which can be computed explicitly and has the form

∂

∂t
Rm = ∆Rm +Q(Rm). (4.2)

Here ∆ = ∆g(t) is the Laplace operator associated to the evolving metric g(t), whileQ(Rm)
is a tensor which is a quadratic function of Rm and whose expression can be found in [9,
§4]. Many important results about Ricci flow can be obtained starting from this equation
and using the maximum principle. In addition to the usual maximum principle for scalar
functions evolving by parabolic equations (see e.g. [5, §7.1.4]), we can apply in this case
also the following maximum principle for tensors by Hamilton [7, Theorem 4.3].

Theorem 4.1 Let (Mn, g(t)) be a riemannian manifold evolving by Ricci flow and let F
be a time dependent tensor on Mn which evolves by the system

∂F

∂t
= ∆F + Φ(F ) (4.3)

for some function Φ from the tensor bundle into itself. Let Z be a closed subset of the
tensor bundle which is invariant under parallel translation and such that its intersection
with each fiber is convex. If Z is invariant in each fiber under the ordinary differential
system dZ/dt = Φ(Z), then Z is also invariant for system (4.3).
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Using the maximum principle one can obtain the following invariance results for the
positivity of curvature under Ricci flow (see [2, §6], [9, §5]). Here and in the following
R denotes the scalar curvature. In addition we call “curvature operator” the Riemann
curvature tensor interpreted as a symmetric bilinear operator on the space of two-forms
(see [9, §4] or [2, §6.3] for details).

Theorem 4.2 Let g(t) be a solution to the Ricci flow on a closed manifold Mn.

(i) The minimum of R is nondecreasing under the flow. In particular, positive scalar
curvature is preserved under the flow (that is, if the initial metric g(0) has positive
scalar curvature, then so does g(t) for all t > 0).

(ii) If n = 3 then positive Ricci curvature and positive sectional curvature are preserved
under the flow. (NB this property may fail in dimension greater than 3).

(iii) Positive curvature operator is preserved under the flow.

Using the maximum principle one can prove further estimates which become interesting
near the singular time. An important example is given by the next result.

Theorem 4.3 Let g(t) be a solution of the Ricci flow on a closed three-manifoldM3 and
let R0 be the minimum of the scalar curvature at time 0. Then there exists a function
φ : [R0,+∞) → (0,∞) such that φ(r)/r → 0 as r → +∞ and such that any sectional
curvature K of the solution at any time satisfies

K ≥ −φ(R). (4.4)

The above result is often called the Hamilton-Ivey pinching estimate and is proved in [9,
Th. 24.4]. Intuitively speaking, the theorem says that when the scalar curvature becomes
large (that is, when the singular time is approached) the negative sectional curvatures, if
there are any, become negligible compared to the other ones. Thus, even if the sign of
the curvature at the initial time is completely arbitrary, the asymptotic profile near the
singularity necessarily has nonnegative curvature. This property will be stated in a more
precise way when we will introduce the rescaling of a solution near a singularity.

5 Differential Harnack inequality

The classical Harnack inequality for elliptic equations is an estimate controlling the oscil-
lation of positive solutions. Similar estimates hold for parabolic equations. In [12] P. Li
and S.-T. Yau introduced an alternative approach to Harnack inequalities, showing that
in certain cases they can be obtained from suitable estimates involving derivatives, which
are called differential Harnack inequalities. Hamilton subsequently developed extensively
this approach for varius geometric evolution equations. In particular, for the Ricci flow
he obtained the following result [8].
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Theorem 5.1 Let (Mn, g(t)) be a solution to the Ricci flow, defined for t ∈ [0, T ), which
is either closed or complete with bounded curvature, and has nonnegative curvature oper-
ator. Then, for any vector V and any time t ∈ [0, T ) we have

∂R

∂t
+

1

t
R + 2〈∇R, V 〉+ 2Ric(V, V ) ≥ 0. (5.5)

The above result is called “trace differential Harnack inequality” because it is obtained
taking the trace of a more general tensor inequality. Integrating along a suitable path in
space time one obtains the following result.

Corollary 5.2 Under the same hypotheses, given any P1, P2 ∈ Mn and 0 < t1 < t2, we
have

R(P2, t2) ≥ t1
t2
R(P1, t1) e

− d2

2(t2−t1)

where d is the distance between P1 and P2 at time t1.

The above estimate shows that the scalar curvature at the later time t2 controls the
curvature at time t1 and is similar to the classical Harnack estimate satisfied by the
solutions of linear parabolic equations. (see e.g. [5, §7.1.4b]).

6 Analysis of singularities

To study the behaviour of solutions of the Ricci flow when the curvature is unbounded
one can use rescaling procedures which are common also for other kinds of PDEs. We
will describe the technique in an informal way because the rigorous statements are rather
technical (see [9, §16]).

Let us first observe that the Ricci flow is invariant under parabolic rescalings, that
is, if we dilate a solution by a factor λ > 0 in space and λ2 in time, we obtain another
solution of the flow, which will have the norm of the curvature |Rm| reduced by a factor
λ2. Suppose now that we have a solution (Mn, g(t)) of the Ricci flow which becomes
singular as t→ T . We can consider a sequence of rescalings with larger and larger factors
near the singular time and then take a limit which describes, intutively speaking, the
singular profile of the original solution. More precisely, let us take a sequence of points
Pj ∈Mn and times tj such that tj ↑ T and in addition

|Rm(P, t)| ≤ C|Rm(Pj, tj)| ∀P ∈Mn, t ∈ [0, tj]

for some constant C ≥ 1 independent of j. For any j ≥ 1 we now rescale our flow by

a factor λj, where λj =
√
|Rm(Pj, tj)|. In addition, we take Pj to be the origin of the

rescaled flow and we translate the time so that tj becomes zero. Then the j-th flow is
defined for t ∈ [−λ2

j tj, (T − tj)λ2
j ]. Observe that the initial endpoint of the time interval

tends to −∞ at j →∞; the final endpoint is positive, and it can be proved that it stays
bounded away from zero for all j. By construction, each rescaled flow satisfies |Rm| ≤ C
everywhere at all times t ≤ 0. It is possible to show that this curvature bound ensures
the existence of a converging subsequence, provided the rescaled flows also satisfy an
injectivity radius bound.
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Theorem 6.1 Let (Mn, g(t)) a solution of the Ricci flow which becomes singular as t→
T , and let us consider a family of rescaled flows defined as above. Suppose in addition
that the injectivity radius of our manifold satisfies the estimate

inj(P, t) ≥ c√
maxMn |Rm|(·, t)

, ∀P ∈Mn, t ∈ [0, T )

for some c > 0. Then a subsequence of the rescaled flows converges uniformly on compact
sets to a limit (M̂n, ĝ(t)), which is a solution to the Ricci flow and is defined in an
interval of the form (−∞, T ∗), with T ∗ > 0 (possibly infinite). If n = 3 then the limit flow
has nonnegative sectional curvature at every point and satisfies the improved differential
Harnack estimate

∂R

∂t
+ 2〈DR, V 〉+ 2Ric(V, V ) ≥ 0. (6.6)

For the proof of the first part of this statement, see [9, §16]. The assertion concerning
the sectional curvature can be obtained from Theorem 4.3; in fact, the right-hand side
of (4.4) disapperars in the rescaling procedure due to the sublinearity of φ. Observe also
that in three dimensions positive sectional curvature is equivalent to positive curvature
operator. Thus the limit flow satisfies the Harnack inequality (5.5) where the R/t term
can be replaced by R/(t − t0) with t0 arbitrarily small since the solution is defined in
(−∞, T ∗). Thus, letting t0 → −∞, this term vanishes and we obtain the improved
inequality (6.6).

In [9, §16] one can also find a precise definition of the “convergence on compact sets”
mentioned in the statement. In particular, even if the rescaled flows are all compact, their
diameter can go to +∞, and thus the limit flow can be noncompact. The typical example
is the neckpinch of Section 2, where the limit flow is an infinite cylinder S2 × IR.

A solution defined in (−∞, T ∗) is called an ancient solution; if T ∗ = +∞, it is called
an eternal solution. Such solutions of the flow are special because, as we have mentioned
before, the Ricci flow in general is not solvable backwards in time.

Hamilton then proved the following classification results of the possible structure of
the limit flow in dimension 3.

Theorem 6.2 Let g(t) be a solution of the Ricci flow on a closed three-manifold M3.
Suppose that the flow becomes singular as t → T and that we have an injectivity radius
estimate of the form

inj(P, t) ≥ c√
maxM3 |Rm|(·, t)

, ∀P ∈M3, t ∈ [0, T )

for some c > 0. Then it is possible to choose the sequence (Pj, tj) in the above construction
in such a way that the limit flow is one of the following (or a quotient under a finite group
of isometries)

(i) the shrinking sphere S3, or

(ii) the shrinking cylinder S2 × IR, or
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(iii) Σ× IR, where Σ is the “cigar” soliton introduced in Section 2.

The above theorem is stated at the end of the paper [9] and the proof uses all the prop-
erties of the limit flow which we have mentioned before. Although such a result already
gave strong restrictions on the possible structure of the singularities, there remained two
unsatisfactory aspects. One was the lack of a general argument which could provide the
injectivity radius estimate needed in the theorem. The second problem regarded case (iii):
if such a limit really occurs then it represents a fatal obstruction to Hamilton’s program,
because there is no clear way to do surgery on a singularity which exhibits such a profile.
Actually, Hamilton conjectured that case (iii) cannot occur, but did not succeed in prov-
ing this. We will see in the next sections how Perelman’s new ideas have solved both of
these difficulties.

7 Perelman’s monotonicity formula

In [13, §3] Perelman introduced the following functional. Let Mn be a closed manifold.
Given a metric g on Mn, a function f :Mn → IR and a positive number τ , consider

W(g, f, τ) =
∫
M

[τ(|∇f |2 +R) + f − n](4πτ)−n/2e−fdVg.

Define also, for fixed g and τ ,

µ(g, τ) = inf
{
W(g, f, τ) : f such that

∫
M

(4πτ)−n/2e−fdVg = 1
}
.

Then the following monotonicity result holds.

Theorem 7.1 If g(t) is a solution of the Ricci flow for t ∈ [t0, t1] on a closed manifold
Mn, and if τ(t) = t̄ − t for some t̄ > t1 then the quantity µ(g(t), τ(t)) is nondecreasing
in t for t ∈ [t0, t1].

The above result has an important application to the analysis of singularities. Let us
introduce the notion of local collapsing.

Definition 7.2 Let (Mn, g(t)) be a solution of the Ricci flow for t ∈ [0, T ), with T finite.
We say that the solution is locally collapsing at time T if there exists a sequence of times
tk ↑ T , of points Pk ∈ M and of radii rk > 0 such that {rk} is bounded and such that, if
we denote by Bk the ball of center Pk and radius rk with respect to the metric g(tk), we
have that |Rm|(P, tk) ≤ r−2

k for all P ∈ Bk and that Vol (Bk)/r
n
k → 0 as k →∞.

It turns out that the monotonicity of W prevents the collapsing behaviour described
above. In fact, as a consequence of Theorem 7.1, Perelman obtains the following crucial
result [13, §4].

Theorem 7.3 If g(t) is a solution of the Ricci flow for t ∈ [0, T ) on a closed manifold
Mn, then (Mn, g(t)) is not locally collapsing at time T .
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To prove this result, Perelman shows that if the flow is collapsing at time T , then
µ(g(tk), r

2
k) → −∞, by plugging suitable functions f in the functional W . On the other

hand, by Theorem 7.1, µ(g(tk), r
2
k) ≥ µ(g(0), tk + r2

k), which cannot be arbitrarily small,
and this gives a contradiction.

It is shown that the collapsing behaviour is related to the smallness of the injectivity
radius at the points (Pk, tk). In particular, if the solution is not locally collapsing, then
it also satisfies the injectivity radius estimate required in Theorem 6.2. Thus, Perelman’s
result ensures that the injectivity radius estimate is always satisfied.

Theorem 7.3 also allows to exclude that the cigar Σ×IR is obtained as limit of rescaled
flows. In fact, one can check that the metric on the cigar Σ is locally collapsing. Since
the collapsing property is invariant under rescaling, Σ × IR cannot occur as the limit of
the rescalings of a noncollapsed solution.

Thus, Perelman’s monotonicity formula is a powerful tool for the analysis of singu-
larities of the Ricci flow. More detailed results about the singularities of the flow in
dimension three are obtained in [13, §11,12]. Once the singularities are analyzed, the
following steps of Hamilton’s program for the proof of the geometrization conjecture are
the surgery construction and the analysis of the nonsingular solutions. These steps have
been done in [14], using also the results from [10, 11]. A shorter argument to obtain the
Poincaré conjecture without proving the full Thurston conjecture is given in [15] (see also
[3]).

Notes on the bibliography:
Most of the relevant papers on Ricci flow which have appeared before 2002 have been

collected in the volume “Collected papers on Ricci flow” (edited by H.D. Cao, B. Chow,
S.C. Chu, S.T. Yau), International Press, 2003.

Some notes and commentary about Perelman’s papers can be found on the web page of
B. Kleiner at “www.math.lsa.umich.edu/research/ricciflow/perelman.html”. Particularly
interesting are the notes by B. Kleiner and J. Lott that can be found there.
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