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Introduction to 3-manifold topology

Carlo Petronio

ICTP, Trieste, June 6-11, 2005

We will be speaking about 3-manifolds. In general, when dealing with n-
manifolds, one should specify which category is employed, namely one of the
following:

TOP

DIFF

PL

A manifold is a topological space covered by charts, i.e. open subsets
homeomorphic to R";

A manifold is a topological space covered by C*-compatible charts,
i.e. open subsets U; with homeomorphisms ¢; : U; — R" such that the
changes of charts ¢; o apj’l, suitably restricted, are C* diffeomorphisms;

A manifold is a topological space covered by closed subsets P; with
homeomorphisms ¢; : P, — A,, the n-simplex, so that each giogjfl,
when applicable, is a linear homeomorphism of a face of A, onto an-
other face of A,,. (Whence the name: Piecewise Linear). In addition,
after subdividing the P;’s, the union of all the P;’s containing any given
point should be homeomorphic to an n-disc with the given point at the
centre.

It is a very deep but by now classical fact that the three viewpoints are
equivalent for n < 3, namely:

Every maximal topological atlas (i.e., system of charts), contains max-
imal differentiable atlases, and two homeomorphic differentiable mani-
folds are diffeomorphic;

Every TOP manifold is homeomorphic to a PL. manifold, and two home-
omorphic PL manifolds are actually PL equivalent.



For this reason, from now on we will freely switch from one viewpoint to
the other. Our 3-manifolds will always be connected and compact, and they
will often have a boundary, which requires a slight extension of the above
definitions. We will be frequently considering submanifolds (1-dimensional,
i.e. knots or links, or 2-dimensional, i.e. surfaces), and we will always assume
that they are tamely embedded (or immersed), which makes it possible to
interchange the TOP, DIFF, and PL viewpoints also when dealing with them.
For the sake of simplicity, all our manifolds will be orientable, which
means, in the DIFF category, that there exists an atlas such that the Jacobian
matrices of the changes of charts always have positive determinant.

1 The loop and sphere theorems

Stated informally, the loop theorem says that in a 3-manifold a homotopically
trivial circle is actually topologically trivial, while the sphere thereom says
that if all embedded spheres are trivial then so are the immersed or singular
spheres. To give more precise statements, we begin by recalling that if ¥
is a surface and M is a 3-manifold, a map f : ¥ — M is called proper if
f7H(OM) = 9X. The most general result about loops is as follows:

Theorem 1.1. Let B C OM be a compact surface (possibly with boundary),
and let N be a normal subgroup of m (B). Let f: D*> — M be a proper map
such that f(S') C B and f(S') & N. Then there exists an embedding having
the same properties.

Concerning the statement just given, note that f(S!) is only well-defined
up to conjugation as an element of 7y (B), but the assumption f(S') ¢ N
makes sense anyway, because N is normal. This theorem implies quite easily
the following more classical statements:

Theorem 1.2 (Loop Theorem). If v C OM is an embedded loop which
bounds a disc in M, then v also bounds a properly embedded disc.

Theorem 1.3 (Dehn’s Lemma). Given f : D* — M such that f(S') C
OM and f(S') is non-trivial in m (OM), then there exists an embedding hav-
ing the same properties.

Corollary 1.4. Given f : D* — M such that f is an embedding if restricted
to some neighbourhood of S* and f=1(f(S')) = S%, then there exists an
embedding g : D* — M such that g(S*) = f(S").
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Corollary 1.5. If K is a knot in S® then K is the trivial knot if and only if
1 (S?\ K) is isomorphic to 7Z.

To state the last corollary, we introduce another notion also needed below.
A (possibly disconnected) surface ¥ properly embedded in M and having all
the components different from the sphere is called incompressible if, whenever
there exists a 2-disc D in M such that D NY = 0D, actually 0D bounds a
disc also in ¥. It is an easy exercise to prove that a surface is incompressible
if and only if all its components are.

Corollary 1.6. A two-sided surface ¥ C M 1is incompressible if and only if
the embedding ¥ — M 1is injective at the level of fundamental groups.

We conclude with the statement of the second fundamental result after
which the section is named:

Theorem 1.7 (Sphere Theorem). If (M) is non-trivial then there is in
M an embedded sphere representing a non-trivial element of mwo(M).

2 Spherical splitting

For the sake of simplicity in this section we only consider manifolds whose
boundary does not contain components homeomorphic to S?. This does
not seriously reduce the generality, because from an arbitrary M we can
construct a unique M without spheres in the boundary by attaching a ball
to the sphere components of OM, and we can reconstruct M from M by
making the appropriate number of punctures.

A natural binary operation on 3-manifolds is defined as follows. Given
M, and My, we remove from M; the interior of a closed 3-disc D; embedded
in the interior of M;, and we construct a new manifold by identifying 0D,
with 0D5. The result is called connected sum of M, and M;, and denoted
by Mi#M,. Since the 2-sphere has two isotopy classes of automorphisms,
at most two manifolds can arise as the connected sum of M; and Ms, but
the operation is actually well-defined if we insist that My, My, and M# M,
should be oriented, and that M;\ D; should be induced the same orientation
from M; and from M;#M,, for 1 =1, 2.

It is an easy exercise to show that # is a commutative and associative
operation. The Alexander theorem implies that S® is the identity element for
the operation of connected sum. In analogy with the case of integer numbers
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with the operation of product, we define a 3-manifold to be prime if whenever
it is expressed as a connected sum, one of the summands has to be S3. A
strictly related notion is the following: M is called irreducible if every S?
embedded in M bounds an embedded D?*. Of course every irreducible is
prime, and the converse is almost true:

Proposition 2.1. The only non-irreducible prime 3-manifold is S% x S*.
We now come to the main statement:

Theorem 2.2. Any 3-manifold M can be expressed in a unique fashion as
a connected sum of primes My, ..., M.

There is a subtlety about the uniqueness part of the previous statement
which is worth pointing out. One easily sees that the realization of M as
Mi# ...# My can be obtained by simultaneously cutting M along a family
Y of k — 1 disjoint embedded spheres, and then filling by balls the resulting
spherical boundary components. What the theorem says is that k£ and the
resulting M, ..., M} are uniquely determined by M. It does not say that X
is determined up to isotopy.

3 Seifert manifolds

An oriented 3-manifold M is called a Seifert manifold if it is expressed as a
disjoint union of circles (the fibres) in such a way that each fibre not contained
in the boundary has a neighbourhood U which is a union of fibres and, for
some coprime integers «, v with > 1, one has that U is fibre-preserving

homeomorphic to (D? x [0, 1])/<pa,y, where 4, : D? x {0} — D* x {1} acts
as (z,0) — (exp(2vmi/a) - z,1), with fibres given by the projections of the
arcs {z} x [0,1]. The fibres of M are required to give rise to an ordinary

fibration in the neighbourhood of M (in particular, 9M must be a union of
fibres).

The space (D?* x |0, 1])/g0a,,, just described will be called the (a,r)-

standardly fibred solid torus. Since all the fibres except the core (the projec-
tion of {0} x [0, 1]) are homotopic to « times the core within the fibred torus,
« is a well-defined invariant of the core. If a > 1 we will say that the core
is a singular fibre. One easily sees that singular fibres are isolated, whence

finite in number. The next result describes to what extent v is an invariant
of the fibre.



Proposition 3.1. e A fibre- and orientation-preserving homeomorphism
between two standardly fibred solid tori with parameters (a,vy) and
(e, va) exists if and only v1 = vy modulo «.

e Reversing orientation, a standardly fibred solid torus with parameters
(e, v) becomes one with parameters (o, —v).

The parameters o and v, which are well-defined if one puts the restriction
0 < v < a, are called the orbital invariants of a fibre. We now define as
base space of a Seifert fibration the space B obtained from M by collapsing
each fibre to a point. A neighbourhood in B of a point coming from a non-
singular fibre is homeomorphic to a disc (or to a half-disc, if the fibre is on the
boundary), while for a point coming from a singular fibre of orbital invariants
(e, v) such a neighbourhood is obtained from a wedge of disc of angle 27/«
by identifying the sides. Since this space is again a disc, we deduce that B
is a surface (or, better to say, a 2-orbifold, as another course will explain).
Note that B may well be non-orientable, even if M is orientable.

4 Fibred classification of Seifert manifolds

Our next aim is to state the fibred classification of Seifert manifolds. To this
end we make a small digression, introducing the notion of Dehn filling, which
has crucial importance in 3-dimensional topology and geometry. We begin
with the following:

Proposition 4.1. o An automorphism of the torus S' x S* is uniquely
determined up to isotopy by its action on the first homology group
H\(S'x SLZ)=2Z o Z;

o An automorphism of the torus S' x St extends to the solid torus D? x S*
if and only if it maps the homology class of the meridian S' x {x} to
plus or minus itself.

Suppose now that a 3-manifold M has a boundary component 7" home-
omorphic to the torus, and that a basis A, u of Hy(7T;Z) has been fixed.
Given coprime integers a, b, according to the previous proposition one can
uniquely define a new manifold M U, (D? x S'), where ¢ : S' x S' — T'is
a homeomorphism such that ¢,(S* x {*}) = £(a- A+ b p). This manifold
is called the Dehn filling of M along £(a - A+ b-p). The condition that a
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and b should be coprime is equivalent to the fact that +(a - A+ b- p) admits
a simple closed curve as a representative. The isotopy class of such a curve,
which is determined by a and b, will be called a slope on T.

Back to the fibred classification of Seifert manifolds, let us slightly change
our viewpoint, switching from the orbital invariants of fibres to certain filling
invariants, which we now define. Let us remove from M a fibred neighbour-
hood of all singular fibres or, in case 9M = () and there are no singular fibres,
a fibred neighbourhood of a regular fibre. The result is a manifold N with
a genuine fibration into circles, whose base space C' is obtained by removing
some open discs from B. By construction, C' has non-empty boundary, so
it has the homotopy type of a graph. This easily implies that the fibration
N — (C admits a global section s. Let us denote now by 7Ti,...,T} the
boundary tori of N arising from the drilling of the fibres of M. We choose
a homology basis A;, u; on 7} in such a way that ); is represented by an
(oriented) fibre, u; is contained in the section s (and oriented), and the basis
is positive. Pasting back the i-th drilled solid torus then corresponds to a
Dehn filling along some slope +(o; - i; + 5; -+ A\;)-

Proposition 4.2. «; # 0, whence we can assume a; > 0. With this choice,
the orbital invariants of the i-th fibre are (o, v;), where v;- 5; = 1 modulo «;.

This result shows that we can define the filling invariants of the i-th fibre
to be («y, 5;), where «; is well-defined and f; is well-defined modulo «;. Note
a; = 1 means that the fibre is non-singular, which by construction can only
occur if there are no singular fibres and no boundary at all. In particular,
we have:

Corollary 4.3. Fither o; > 1 for alli or (k=1 and B is closed).

One can actually reverse the construction just described, i.e. one can
build a Seifert manifold starting from an arbitrary surface B and certain
pairs of coprime integers (aq, 31), ..., (g, Br) with a; > 0 and either a; > 1
for all ¢ or (k = 1 and B is closed). To do so, one makes k punctures
to B, getting a surface C', and one takes the circle-fibration N — C with
orientable total space, i.e. the product fibration if B is orientable, and the
twisted circle-bundle if B is not. One then chooses a section s : C' — N and
proceeds as above, selecting homology bases and doing Dehn filling.

Theorem 4.4. e The Seifert manifold (B; (a1, 51), .- ., (o, Br)) is well-
defined, i.e. its construction is independent of the choice of the section
of the fibration N — C;



e Fwery Seifert manifold has the form (B; (ay, 1), - ., (Qk, Bk));

o Two Seifert manifolds

(B; (a1761)7 SR (akvﬂk)) (B,; (0/1751)7 SR (a;c’aﬁl,c’))

with non-empty boundary are fibre- and orientation-preservingly home-
omorphic if and only if B' = B, k' =k, and, up to reordering, o), = o;
and B; = B; modulo «; for all i;

e Two closed Seifert manifolds

(B; (ala ﬂl)a sy (ak; ﬁk)) (B,; (O/la Bi)a ety (a;c’a ﬂl,c’))

are fibre- and orientation-preservingly homeomorphic if and only if
B = B, k' =k, up to reordering o = «; and B = [; modulo «;
for all i, and

k Ko

For a closed M = (B;(ay,B1), .-, (o, B;)) the rational number 3 2
is called the Euler number. For a genuine fibration, i.e a Seifert fibration
without singular fibres (B;(1,n)), the Euler number is n and it coincides
with the classical Euler number of the fibration, defined as the obstruction
to the existence of a section.

5 Topological classification of
Seifert manifolds

We now turn to the topological classification of Seifert manifolds, i.e. up to
orientation-preserving homeomorphism, neglecting the fibred structure. It
turns out that a key ingredient for such a classification is the presence of
“essential” fibred annuli (which occurs if and only if there is some boundary)
or of fibred tori. For this reason there is a “small” set of closed Seifert
manifolds for which the statement of the classification result is somewhat
involved, and we will refrain from giving it.



We begin with the case of non-empty boundary, and describe some ex-
ceptions. Of course all the standardly fibred solid tori (D?; (a, 3)) are topo-
logically the same, and there are infinitely many of them up to fibred home-
omorphism. On the manifold S* x S' x D! one can define infinitely many
non-isotopic Seifert structures, each depending on the choice of a slope on
the torus S x S!, but of course all these structures are isomorphic to each
other. The next exception is more elaborate to explain. Consider the Klein
bottle K and the orientable interval-bundle over K, denoted by K xD'. We
can realize such a manifold as the quotient of the cube D' x D! x D' under
the identifications generated by

(—1,y,2) ~ (+1,y, 2) (x,—1,2) ~ (—z,+1,—2) Vr,y,z € Db

Taking as fibres the images of the intervals D' x {x} x {x} gives K xD' the
structure of a Seifert manifold over the Mobius band without singular fibres.

On the other hand, if one takes as fibres the images of the intervals {*} x
D' x {x} one sees that K x D! also has the Seifert structure (D?; (2,1), (2,1)).

Theorem 5.1. With the exceptions just described, any Seifert manifold with
non-empty boundary has a unique Seifert fibration up to isotopy.

Turning to the closed case, let us now say that a Seifert manifold is large
if it contains an incompressible fibred torus. The next result shows that most
Seifert manifolds are large:

Proposition 5.2. A closed Seifert manifold is large unless one of the fol-
lowing holds:

e it is fibred over the sphere with at most three exceptional fibres;

e it is fibred over the projective plane with at most one exceptional fibre.

As in the bounded case, let us begin by describing some exceptions to
the uniqueness of the Seifert structure. The manifold S' x S* x S! admits
infinitely many non-isotopic but isomorphic Seifert structures. Doubling the
manifold K xS! described above one gets the twisted circle bundle over the
Klein bottle, which, as one sees using arguments similar to those employed
above, can also be given the Seifert structures (5% (2,1), (2,1), (2, —1), (2, —1))
and (P?%;(2,1),(2,-1)).

Theorem 5.3. With the exceptions just described, any large closed Seifert
manifold has a unique Seifert fibration up to isotopy.
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As already announced, we will not deal with closed Seifert manifolds
which are not large. We only mention that the techniques to be employed in
this case are completely different from those based on incompressible surfaces
used for large manifolds, and that there are many more repetitions. As an
example, the following holds:

Proposition 5.4. e The Seifert fibred manifold (S* (p1,q1), (p2,q2)) is
homeomorphic to the lens space L, , where p = p1 - g2 + q1 - p2 and
q = p1-So+q1 19, where ro, so are integers such that py-so—qo 19 = 1;

o A lens space Ly, is homeomorphic to another lens space Ly o if and
only if p' = p and ¢' - ¢ = £1 modulo p.

In the first assertion of the previous statement, note that p is well-defined
because the Euler number is, and that ¢ is well-defined modulo p. Note also
that switching indices in the definition of ¢ gives the inverse of ¢ modulo p,
whence the same lens space by the second assertion.

6 The JSJ decomposition

Besides cutting along “incompressible spheres” (i.e. separating spheres not
bounding balls), which cannot be done in a canonical way but leads to the
unique splitting into primes, one can try to simplify a given 3-manifold by
cutting along incompressible tori. However, one sees that Seifert manifolds
can be cut along tori in many different ways, so one avoids these cuts al-
together. The result of these cuts, which turns out to be canonical, is the
so-called JSJ (Jaco-Shalen and Johansson) decomposition of M, which we
will only state in a simplified geometric fashion.

We define a manifold M to be atoroidal is every incompressible torus 7’
embedded in M is parallel to a boundary component of M (i.e., together with
a boundary component it bounds an embedded product manifold 7" x [0, 1]).

Theorem 6.1. If M s irreducible then there exists in M and is unique up
to isotopy a finite family T of incompressible tori satisfying the following:

e Fach component of M \ T is either atoroidal or Seifert;

e T is minimal with respect to the previous property.



7 Normal surfaces

One key ingredient in the proof of both Theorems 2.2 and 6.1 is the theory
of normal surfaces. Since this theory has independent interest, in particular
in connection with the algorithmic theory of 3-manifolds, we sketch its main
features here. For the sake of simplicity we only refer to the case of closed
manifolds, and we only describe normal surfaces with respect to triangula-
tions, omitting the (often more useful) theory of normal surfaces with respect
to handle decompositions.

Let T be a triangulation of M, i.e. a realization of M as a gluing of
tetrahedra along codimension-1 faces. (In the original PL definition of tri-
angulation one should require the tetrahedra to be embedded in M and to
intersect pairwise in at most one common face, but this restriction is not
necessary here).

To give the definition, we call triangle in a tetrahedron A the intersection
of A with a plane separating one vertex from the other three, and square the
intersection of A with a plane separating two vertices from the other two. A
surface ¥ embedded in M is called normal with respect to T if it meets each
tetrahedron of 7 in a union of triangles and squares.

The first of the results we will now state requires an additional definition.
A collection ¥ of disjoint spheres embedded in M is called essential if no
component, of M \ ¥ is a punctured disc.

Proposition 7.1. Any essential system of spheres can be replaced by one
having the same number of components and being in normal position with
respect to T .

Proposition 7.2. Suppose that M is irreducible. Consider a possibly dis-
connected surface ¥ properly embedded in M and having all the components
different from the sphere. Suppose that ¥ is incompressible. Then ¥ can be
isotoped to a surface in normal position with respect to T .

Theorem 7.3. There exists an integer v depending on M and T such that,
if X is a normal surface with respect to T having more than v components,
then two components of 3 are parallel.
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