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Introduction

A Kleinian group is a discrete group of isometries of hyperbolic 3-space H?®. Any
hyperbolic 3-manifold is the quotient of H? by a Kleinian group. In the 1960s, the
school of Ahlfors and Bers studied Kleinian groups mainly analytically, in terms of
their action on the Riemann sphere. Thurston revolutionised the subject in the 1970s
by taking a more topological viewpoint and showing that in a certain sense ‘many’
3-manifolds, perhaps one could say ‘most’, are hyperbolic. He also introduced many
wonderful new concepts, some of which we shall meet here.

In the last five years, our understanding of Kleinian groups has advanced by leaps
and bounds with the proofs of three great conjectures: the Density Conjecture, the
Ending Lamination Conjecture and the Tameness Conjecture. Combined, they give
a remarkably complete picture of Kleinian groups.

The aim of these lectures is to give a very rapid introduction to this vast subject.
Our goal is that by the end of the lectures we should be able to appreciate the
statements and significance of these wonderful conjectures. The first two lectures
contain general background on the algebra, geometry and topology of Kleinian groups.
Lecture 3 presents the ‘classical’ and well understood picture of ‘geometrically finite’
groups. In the last lecture we describe spaces of groups and the Thurston-Bonahon
picture of ‘geometrically infinite’ ends.

There are only a few books which systematically take the modern viewpoint,
notably [MT, Kap]. T have been fortunate to have a sneak preview of the forthcoming
book by Marden [Mar|. Since I found it so useful, I have given numerous references.
The book should appear around the end of 2005 and I am sure will become an essential
handbook for anyone wanting to work on this subject seriously.

The first lecture contains rather a lot of material. 1 shall spend very little time on
the model of hyperbolic space and properties of Mébius maps, which I imagine most
people will have seen before. It would be helpful if possible to look at this before the
lecture.



Lecture 1: Kleinian group basics

A Kleinian group is a discrete group of orientation preserving isometries of hyperbolic
3-space H?. There are many reasons to study such groups. One important motivation
is that they arise as the holonomy representation of a hyperbolic structure on a 3
manifold M. More precisely:

Theorem 1.1 Let M be a complete hyperbolic manifold. Then M = H?3/G where G
1s a Kleinian group.

Here complete means that every geodesic can be extended indefinitely.

Since M looks locally like hyperbolic space, G contains no elements of finite order.
So we will often find it convenient to simplify by assuming that G is torsion free, in
other words that there is no g € G with ¢g* = id.

In this lecture we look at some basic properties of Kleinian groups.

Modelling hyperbolic space We shall work with the upper half space and Poincaré
ball models of hyperbolic 3-space H?. This allows us to identify the orientation pre-
serving isometry group Isom™H? with the group PSL(2,C).

The upper half space H consists of points {(z,t) : z € C,t > 0}. The metric is
ds? = ‘dz‘iiﬁﬁ. In the unit ball B® = {(x1, 29, 73) € R? : r? = 2% 4+ 23 + 23 < 1} the
.
easily map H to B? so usually we consider these two models to be equivalent.

metric is ds? = Using stereographic projection (or rather its inverse) we can
The model is conformal, that is, angles are correctly seen as Euclidean angles. In
‘H, hyperbolic planes are either vertical Euclidean planes of hemispheres centred on
C. Geodesics are vertical Euclidean lines or arcs of great circles on these hemispheres.
The hyperbolic distance dgs (P, Q) between P = (21,t1) and @ = (29,t2) in H is
given by
|21 — 2?4+ [t — to?
21t

coshdgs (P,Q) =1+
In particular, we find
t
des ((0,11),(0,12)) = |log é|

If P € H is fixed, then dgs (P, Q) — oo as ty — 0. This justifies calling the Riemann
sphere C = CUoo the boundary at infinity. When the specific model is not important,
we write this boundary as OH?3.



Representation of isometries using SL(2,C). Asin Euclidean geometry, isome-
tries of H? are generated by reflections in (hyperbolic) planes. Orientation preserving
isometries correspond to even numbers of relections. Hyperbolic planes meet C in
circles and hyperbolic reflection in a plane extends to inversion in a circle. (Inversion
in the circle |z — ¢| = r is given by the formula z — ¢+ Z’":jc) Thus Isom™H? is gen-

erated by products of even numbers of inversions. These are just the Mdbius maps

az+b
cz+d”

in many places, for example [MSW].

z = We briefly recall some basic facts on Mobius maps. You can find details

e Mobius maps compose by matrix multiplication. Multiplying all coefficients in

b
A= (a d) by a non-zero A € C does not affect the action. Hence dividing all

coefficients by +v/det A we may assume A is normalised so that det A = 1. The
ambiguity +1 means that the group of Mobius maps Mob C can be identified
with PSL(2,C).

e Mob C acts transitively on triples of distinct points in C.

e Transforming C by S € Mob C induces the action of conjugation on A € C. For
example, if A has a fixed point zy then SAS™! has a fixed point S(z).

o Tr A = a+ d is invariant under conjugation in SL(2,C). Because of the ambi-
guity of sign, strictly speaking only Tr? A is defined on PSL(2,C).

e A Mobius map has one or two fixed points. If there are two fixed points, one
is attracting and one repelling. The classification up to conjugation is given
below.

Types of isometries
One fixed point; Parabolic: Tr A = £2. Canonical form: z +— 2z + ¢, c € C.

Two fixed points Tr A # £2. Canonical form: z — kz,x € C. From the canonical
form, Tr A = \/k + 1/+/k. This subdivides into:
(Purely) hyperbolic: x € R. TrA € R, Tr* A > 4.
Elliptic: |s| =1 TrA € R, Tr* A < 4.
Loxodromic: Tr A ¢ R.



In H3, a parabolic z +— z+c extends to the Euclidean translation (z,t) — (z+c, ).
All the other types z +— kz extend to a homothety (z,t) — (kz, kt).

If A € MobC has two fixed points, then the line in H3 joining them is called its
axis. By moving to the standard position with fixed points at 0, 0o, it is easy to check
that A moves points along the axis by a distance [, and rotates around the axis by
an angle 04 given by

Tr A =2cosh((l4+1i04)/2).

(The ambiguity in sign caused by the fact that 84 and 64 + 27i represent the same
rotation corresponds to the ambiguity in sign of Tr A.) [4 is called the translation
length of A and As := 14 + 10,4 is called the complex translation length.

A is purely hyperbolic iff 4 = 0 and elliptic iff [, = 0. Note that an elliptic is
just rotation about the axis, so has finite order iff 6, € 27Q. If A is parabolic then
by convention we set [4 = 04 = 0.

Elementary groups The above discussion gives our first examples of Kleinian
groups:
1. {¢g",n € Z), g parabolic.

2. (g"h™,n,m € Z), g, h parabolic with same fixed point but different translation
directions.

3. (¢g",n € Z), g loxodromic.
4. {g",0 < n < k), g elliptic, g* = id.
Actually these examples are not so special as they seem.

Lemma 1.2 Let G be Kleinian and say g,h € G. Then g,h have either both fixed
points in common or neither.

n

PRrROOF. Normalise so that one common fixed point is at oo and then study g~ "hg".
For example, if h(z) = 2+ 1 and ¢(z) = kz with £ > 1 then g"hg"(2) = 2+ r™". It
follows that G is not discrete. U

From this we deduce that if g, h are loxodromics with a common fixed point, then
they have the same axis.

Lemma 1.3 Let G be Kleinian and let g,h € G be purely hyperbolic with the same
azis. Then G is cyclic (see example (3) above).
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PrROOF. Normalise such that g(z) = kz,h(z) = pz. The set of powers K"u™ is
discrete in R if and only if there exists a > 0 such that x = a” and p = a®; moreover
using the Euclidean algorithm we can assume that a = xkPu? for suitable p,q € Z. U

These and other similar results lead one to make the following

Definition 1.4 A Kleinian group is elementary if it is virtually abelian; that is, it
has an abelian subgroup of finite index.

Proposition 1.5 A Kleinian group is elementary iff there is a finite G-orbit for its
action on C.

Theorem 1.6 The list (1)-(3) above contains all the torsion free elementary Kleinian
groups.

If a Kleinian group is not elementary, then it is quite complicated:

Proposition 1.7 If a Kleinian group is not elementary then it contains infinitely
many loxodromic elements with pairwise distinct azes.

There are very few explicit tests to check if a group is discrete. Essentially the
best we have is:

Theorem 1.8 (Jorgensen’s inequality) Let A, B € SL(2,C). If (A, B) is Kleinian
and non-elementary, then

ITr?A — 4|+ | Tt ABA™'B™! — 2| > 1.

As we shall see, this has many important implications.
Details of the above results can be found in many texts on Kleinian groups, for
example [Bea, Mas, Mar].

Kok ok sk sk sk skokosk sk skok sk skoskosk sk skokoskoskoskosk sk skokoskoskokoskoskokosk sk kol sk skokoskoskokosk stk skoskoskoskokoskokoskokoskoskokokoskokokoskokoskokoskokesk
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More on discreteness Recall our definition: A subgroup G C I'somTH? is Kleinian
if it is discrete. With our identification of I'som™™H? with SL(2,C), this is equivalent
to: G is Kleinian iff there exists € > 0 such that ||g£1|| > €, where ||.|| is any suitable
norm on SL(2,C). This condition is enough to ensure that G has no accumulation
points, since g, — g € G is equivalent to g~ 'g, — I.

You may be worried about the PSL(2,C) versus SL(2,C). Here is a rather deep
theorem:



Theorem 1.9 ([Cul]) Let T be an abstract group. Suppose given a representation
p:T'— PSL(2,C) such that p(T') is Kleinian and non-elementary. Then p lifts to
p:T'— SL(2,C) iff I' contains no elements of order 2.

If G acts on a topological space X, then in order to have a decent quotient space
X/G we need to know that the G acts in a ‘reasonable’ way, such that, for example,
the orbits form a Hausdorff space. This leads to

Definition 1.10 Suppose that G acts by homeomorphisms on a topological space X .
Then H acts properly discontinuously if for all compact subsets K C X, {g € G :
gK N K # 0} is finite.

Lemma 1.11 IfG C PSL(2,C) acts properly discontinuously on a topological space
X, then G 1is discrete.

ProOOF. If the result is false, then there exist g, € G, g, — I. Take K to be a ball
with compact closure. Then g, K N K # () for infinitely many g,,. O

In general, the converse is false. For example, let G = SL(2,Z][i]), the subgroup
of SL(2,C) whose entries are Gaussian intergers m + in,m,n € Z. This is clearly
discrete. However the G-orbits on C ‘pile up’, as one can see by looking at the orbit of
0 under the subgroup SL(2,7Z). It is easy to see this consists of the extended rational
numbers Q U oco.! However we do have the following crucial theorem:

Theorem 1.12 G C PSL(2,C) is Kleinian iff it acts properly discontinuously on
HE.

PROOF. The main idea is that for any r > 0, and P = (0,1) € H?, {y € SL(2,C) :
dgs (P,vP) < r} is compact in SL(2,C). For details see for example [Bea, Thu]. O

Corollary 1.13 If G ¢ PSL(2,C) is Kleinian and torsion free then H?/G is a
hyperbolic 3-manifold.

There are lots of possible variations of the definition of proper discontinuity. You
can find an excellent discussion in [Thu] §3.5.

LGroups with entries in number fields form a large and important class of Kleinian groups which
we shall not have time to touch on in these lectures.



Action on C What about the action of a Kleinian group on C? The above example
of SL(2,Z][i]) shows it may not be properly discontinuous.

Definition 1.14 The ordinary set Q@ = Q(G) C C of a Kleinian group G is the
maximal open subset of C on which G acts properly discontinuously. The limit set

A=AG) isC\ Q.

Q) is also called the regular set and the domain of discontinuity. It is the maximal set
on which the elements of G form a normal family in the sense of complex analysis.
McMullen calls A ‘the chaotic set’. 1t is the analogue of the Julia set for a rational
map. If G consists entirely of elliptic elements (and hence is finite), A is empty.
Otherwise, A is non-empty, because Cis compact and the (infinite) G-orbits have to
accumulate somewhere. {2 may or may not be empty. In some rather old fashioned
terminology, G is called ‘of the first kind’ if = () and ‘of the second kind’ otherwise.
SL(2,Z]i]) is a good example of a group of the first kind. The elementary groups are
all of the second kind; in fact:

Lemma 1.15 A s finite iff G is elementary. In this case, A contains either 0,1 or
2 points.
Suppose G is non-elementary. Then:

1. A is uncountably infinite, closed and minimal, that is, the G-orbit of any point
in A is dense in A.

2. A is the closure of the loxodromic fixed points (and equally of the parabolic
fixed points, if G contains any parabolic).

3. A is the set of accumulation points of the G-orbit of any point in C U H?.

4. Suppose that H is a subgroup of GG. If either H is of finite index, or H is normal
in G, then A(H) = A(G).

5. If A(G) # C, then its interior is empty.
The last item suggest Ahlfors’ conjecture:

Conjecture 1.16 If A(G) # C, then it has Lebsque measure 0.

A consequence of the three great new theorems mentioned in the introduction,
is that Ahlfors conjecture is now proved [BBES]. More precisely, Ahlfors proved
it for geometrically finite groups (see Lecture 3). Following on work of Thurston
and Bonahon about geometrically infinite groups (see Lecture 4), Canary proved it
for tame groups [Can]. Thus the Ahlfors conjecture now follows from the tameness
conjecture (see Lecture 3).



Here are some properties of {2. Assume that G is finitely generated, non-elementary

and that Q # (). Then:

1. Q has either 1,2 or infinitely many connected components.

2. Each connected component of {2 is either simply connected or infinitely con-
nected.

3. If there are two G-invariant components {2; and {2, then each is simply con-

nected and 2 = Q; U Q.

4. If there is one G-invariant component €2y, then all other components are simply
connected.

Properties (1)-(3) are elementary but (3,4) are much deeper and are most easily
proved using 3-dimensional topology, see [Mar74, Mar|. The groups in (3) are exactly
the quasifuchsian groups we shall meet in the next lecture. In the older literature,
groups with an invariant component are called function groups. Groups with a simply
connected invariant component are called B-groups.

The Ahlfors finiteness theorem. We end with two deep theorems. Recall that
a Riemann surface is a surface with local charts to C such that the overlap maps
are complex analytic. A puncture is a neighbourhood of a boundary component
for which we have a chart to a punctured disk. If a surface carries a hyperbolic
structure, it automatically carries a conformal structure by ‘forgetting’ the metric
and remembering only the angles. It is a consequence of the famous uniformisation
theorem that:

Theorem 1.17 (Uniformisation theorem) Suppose that S is a Riemann surface,
possibly with punctures, which has negative Fuler characteristic. Then there is a
unique hyperbolic structure on S inducing the given conformal structure.

Theorem 1.18 (Ahlfors finiteness theorem) Suppose that the Kleinian group G
is non-elementary and finitely generated. Then /G is a finite union of Riemann
surfaces of finite type. Moreover each of these surfaces has negative Fuler charateristic
and so is hyperbolisable.

There are (at least) two modern proofs of the Ahlfors’ finiteness theorem which
are much easier than Ahlfors’ original version, see [Kap] and [Mar05].



Lecture 2: Geometry of hyperbolic 3-manifolds

In this lecture we look at some basic features of a hyperbolic 3-manifold M = H?/G
with the action of G on C. As we shall see, what we learnt in the last lecture gets us
quite a long way.

First, consider loops in M = H?/G. We can identify G with m;(M). Take any
homotopically non-trivial loop v C M. Let L([y]) = inf{l(7') : v € [7]}, where [7]
is the free homotopy class of 7. Then either

e L([y]) > 0, in which case the infimum is attained by a unique closed geodesic,
in the homotopy class and L([y]) is the translation length of the associated isometry
g€ G, or

e L([y]) = 0, in which case  is represented by a parabolic element in G.

From Theorem 1.6 and Proposition 1.7 in the last lecture we obtain:

Corollary 2.19 Suppose that G is a non-elementary Kleinian group. Then:
1. W3/G contains infinitely many distinct closed geodesics.

2. The only rank 2 abelian subgroups correspond to a pair of parabolics with a
common fized point.

As we shall see, (2) implies that M is atoroidal.

Incompressible and compressible boundary If GG is a Kleinian group, it is
often convenient to add on the surfaces at infinity to obtain the Kleinian manifold
Mg = (H*UQ)/G. In the last lecture we saw that each connected component €; of
Q) is either simply connected or multiply connected. This has a nice interpretation in
terms of the topology of M.

Let €; be a connected component of €). There is a natural inclusion map from
the surface €;/G into M¢ which induces a map ¢ : m1(Q;/G) — m (M) = G.

Lemma 2.20 ¢ is injective iff €; is simply connected.

PROOF.= Suppose (2; is not simply connected. Then it contains a closed loop y which
is not trivial in §2; and hence not trivial in m(€2;/G). However the ‘roof’ sitting over ~y
in H? provides a null homotopy of 7y in H* U and hence in M. So ¢ is not injective.

< Suppose ¢ is not injective. This means there is a loop on 2; /G which is non-
trivial in 7 (€2;/G) but trivial in G. By the loop theorem, there is a loop on Q;/G
which bounds a disk in M. This disk lifts to a disk in H? whose boundary meets Q;
in a closed non-trivial loop in ;. O



If ¢ is injective, the corresponding boundary component is called incompressible,
otherwise it is compressible. Usually the incompressible case is easier to handle.

More on Cusps Suppose that G contains a parabolic element. We want to see
what M looks like in a neighbourhood of its fixed point, which necessarily lies on the
boundary OH?. Since the parabolic is represented by arbitrarily short loops in M, we
know that this neighbourhood is in the thin part of the manifold and hence, by the
Margulis lemma, is either a cusp cylinder or a cusp torus.

We can get a more explicit picture of cusp neighbourhoods as follows. In the upper
half space model, a ball tangent to OH? = C at ¢ e C is called a horoball based at €.
In particular, if & = oo, a horoball based at oo is a set Hy; = {(2,t) : t > s} for some
s > 0. We sometimes call s the height of the horoball. We easily see by conjugating
that a parabolic with fixed point at & maps horoballs based at £ to themselves.

Let P be a Kleinian group all of whose elements are parabolic with a common
fixed point. As we saw in Lecture 1, P is isomorphic either to Z (rank 1) or Z?
(rank 2). By conjugation, we can put the fixed point at oo and scale so that P has
generators A(z) = z + 1, and additionally, in the rank 2 case, B(z) = z + b where
Imb # 0. With this normalisation it is not hard to see that, in the rank 1 case, H,/P
is a solid infinite cylinder with missing core (a cusp cylinder) and, in the rank 2 case,
a solid torus with missing core (a cusp torus). The hyperbolic distance from 0Hj to
the core of the cusp cylinder or cusp torus is infinite. The cusp cylinder is also infinite
in the direction parallel to the core curve. Travelling along 0H; in either direction
parallel to the core curve we limit on the boundary at infinity C.

Now suppose that P is a subgroup in a larger Kleinian group G. We want to see
that this is also the correct picture in H?/G. For this, we need to show that for some
choice of s, Hy/P = Hy/G. This will be the case if we can find s such that H; is
precisely invariant under (P, G). This means:

e g(H,) = H; for all g € P and

e g(H;)NHy;=10forall ge G\ P.

That we can do this is the content of the Margulis lemma. Jgrgensen’s inequal-
ity 1.8 allows us to quantify s explicity.

Theorem 2.21 Suppose that the Kleinian group G contains a parabolic A(z) = z+1.
Then the interior of Hy is precisely invariant under the parablic subgroup P which
fixes oco.

The proof uses isometric circles. Suppose that g € SL(2,C) does not fix co. The
isometric circle I, of g is the circle in C on which |¢/(z)] = 1. If g = (az +b)/(cz + d)
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we compute that ¢'(z) = (cz + d)~? and hence that I, is the circle centre —d/c and
radius 1/|c|.

Lemma 2.22 (Shimizu’s lemma) Suppose that the non-elementary group G contains

1 1 b
the parabolic A = (O 1). Then if B = (CCL d) € G, we have |c| > 1.

PROOF. Jgrgensen’s inequality says that
ITr?A — 4|+ | Tr ABA™'B™! — 2| > 1.

We compute Tr ABA™'B™!' =2+ c?so|¢| > 1. O

1 1
PROOF OF THEOREM 2.21. Shimizu’s lemma implies that if A = (O 1) € G then

b
for any g = (a d) € G not fixing oo, the isometric circle I, has radius at most 1.
c

Let fg be the hemisphere in H sitting above I,. It is easy to check that g maps the
region in H outside I, to the region in H inside I,-1. This implies that the interior
of the closed horoball H; is precisely invariant under (P, G). O

Cusps on /G How does a parabolic in H? /G relate to a puncture on Q/G? Recall
from the uniformisation theorem 1.17 that each surface in {2/G carries a hyperbolic
metric inducing its Riemann surface structure. A more general question is, how does
the hyperbolic metric on /G relate to the hyperbolic metric on H?/G?

Theorem 2.23 (Ahlfors lemma) Suppose that Qg is a simply connected component
of Q. Let vy be a geodesic on Qy/G, represented by an element g € G. Then

les ja(9) < 2laya(y)-

In particular, if v is parabolic on /G (so that lgs ;c(g) = 0), then g is parabolic in
G.

By the two dimensional analogue of the discussion above, the neighbourhood of a
puncture on a hyperbolic surface looks like the quotient of a horoball neighbourhood
of oo by a translation; in other words, a cusp annulus. (Notice that on a hyperbolic
surface, there are no rank 2 parabolic subgroups, because no such a subgroup has
an invariant disk in C) Such a neighbourhood projects to a topological disk in 2
tangent to the parabolic fixed point. The hemisphere above this disk is also precisely

11



invariant under P. This means that on the end of the cusp cylinder we can glue in
a punctured annulus, a neighbourhood of the puncture on €/G. If this can be done
on both ends of the cylinder, we call the quotient a pairing tube. This happens, for
example, if G is Fuchsian or quasifuchsian.

Notice that the inequality in Ahlfors’ lemma only goes one way. This means that
we could have a loop in /G which was not parabolic (so not a loop round a punture)
which was nevertheless repesented by a parabolic element in G. Such curves are called
accidental parabolics on 2 /G. Typically, a curve which is accidentally parabolic on
one component of €2/G will represent a cusp on another.

The Kleinian manifold Recall we defined the Kleinian manifold associated to G
as Mg = (H2UQ)/G. If G has cusps, Mg is not compact. It is usually easier to deal
with a compact manifold, so it is often convenient to remove solid cusp annuli and
tori round the cusps to create a compact manifold M2. Corollary 2.19 shows that Mg
is always atoroidal, that is, all the Z? subgroups come from boundary tori. Because
of the hyperbolic structure it is also irreducible, that is, every 2 sphere bounds a ball.
Compare a version of Thurston’s hyperbolisation theorem:

Theorem 2.24 (Thurston, see [Kap]) Suppose that a compact 3-manifold V is irre-
ducible and atoroidal and that OV # (). Then V has a hyperbolic structure, that is, V
is homeomorphic to MY for some Kleinian group G.

One can also specify the parabolic locus, which we can think of as the toral bound-
ary components and in addition a collection of annuli in the non-toral boundary com-
ponents which are to become parabolic. The only condition is that the boundary
of any essential annulus in V' should not contained in the parabolic locus. Such a
specification is called a pared manifold, see [Kap] for a precise statement.

Fundamental domains We have seen in Zimmerman’s lectures how one can form
hyperbolic manifolds by gluing the faces of a polyhdron (or polygon in the surface
case) using hyperbolic isometries. Poincaré’s theorem tells us that the resulting man-
ifold will be H?/G for some Kleinian group G iff
e The sum of angles around each edge is 27 and
e The resulting manifold with a suitable induced metric is complete.

The construction in H? is simpler: we glue the sides of a polygon ensuring that
the angles sum around each vertex is 27. In this case, if the polygon is finite sided

12



there is a simple condition for completeness: Any cycle corresponding to an ideal
vertex of the polygon (that is, a vertex where two sides meet on 9H?) is parabolic.

Suppose that conversely we are given a hyperbolic 2- or 3-dimensional manifold.
Can we find a corresponding polyhedron? The answer is provided by the Dirichlet
domain. The following nice description comes from [Mar|. Pick a point a € M and
start blowing up a balloon centred at a. Eventually one side of the balloon will touch
another. If you keep blowing, the parts of the ballon near these touching points will
flatten out forming the beginnings of a planar face. As you keep blowing, other points
will touch starting further faces. Eventually different faces will meet at vertices. Keep
going until you have filled up all of M, lift to H?, and you have the Dirichlet domain
D,(G) centred on a. More formally:

D.(G) ={q € B’ : d(q,a) < d(q,g(a)) for allg € G\ I}.

One can show that D = D,(G) is a convex fundamental polyhedron for the action
of G on H3. This means that the images g(D), g € G tesselate H?, in other words,
g(D) N h(D) = 0 unless g = h, and the images of D cover H?.

D is locally finite, more precisely only finitely many faces meet any compact set
in H3. The faces of D are pieces of hyperplanes which bisect the distance between a
and any of its neighbouring orbit points. They come naturally in pairs: if D meets
g(D) along a common face F, then g~(D) meets D = g~'(g(D)) along the common
face g71(F'). We say that ¢! ‘pairs’ the face F to the face g~ !(F'), and g~! is called

1

a side pairing of D. It is easy to see that if g7 is a side pairing, then so is g.

Proposition 2.25 For any a € H?, a Kleinian group G is generated by the side
pairings of Dy (G).

PRroOOF. Take h € GG and join a to h(a) by a path « which avoids all vertices of D =
D,(G) and its images under G. Notice that if g(D) meets ¢'(D) in a common face,
then ¢'~1g(D) meets D in a common face so that ¢'~1g is a side pairing. Suppose that
the polyhedra crossed by « in order along its path are D, g(D), ..., gx—1(D), h(D).
Then h = (I711)(g97 'g2) - .- (g5, ), expresses h as a product of side pairings. O

Corollary 2.26 If for some a € H3 D,(G) has finitely many faces, then G is finitely
generated.

The converse is true in dimension 2 but not in dimension 3. Groups for which D,(G)
has finitely many faces are called geometrically finite and are the subject of the next
lecture.

It is high time to have some examples.

13



Fuchsian groups By definition, a Fuchsian group is a discrete group of isometries
of H2. Embedding H? as a plane in H?, we see that any isometry of the plane extends
to an isometry of H?. So a Fuchsian group G can be considered as a special case of
Kleinian group. The quotient H?/G is a hyperbolic surface 3.

Think of H? as the equatorial plane in the ball B3. Let G be a Fuchsian group
and take a fundamental polygon D¢ for G acting in H2 Now extend each of its
sides into a plane in H?. This extends Dg to a ‘chimney’ which forms a fundamental
polyhedron for G acting in H3. From this picture, we see that H?/G is homeomorphic
to S x (0,1), where S is a topological surface homeomorphic to the hyperbolic surface
3.

Assuming that ¥ is closed or possibly has finitely many punctures (so that G
is of the first kind) then A(G) is the equatorial circle in which H? meets C. Q has
two connected components QF each of which is simply connected and G-invariant.
The quotients QF /G each have conformal structures whose corresponding hyperbolic
structures are identical with that of 3.

Isometries of H? are exactly the Mobius map which map H? to itself. An element
in SL(2,C) maps H? to itself iff all coefficients are real. Thus Isom™H? is naturally
identified with SL(2,R) C SL(2,C). Conjugating by a Mobius map sends H? to
another disk in C. Even though the matrix entries in the conjugated group are
no longer real, all the traces remain real. This gives another characterization of a
Fuchsian group:

Definition 2.27 A Fuchsian group is a Kleinian group which leaves invariant a disk
in C. A Kleinian group is Fuchsian iff the traces of all its elements are real.

We can construct lots of examples of Fuchsian groups by starting with a finite
sided hyperbolic polygon, pairing sides in some specified way, and checking the con-
ditions of the Poincaré theorem. For example, identifying opposite sides of a regular
4g-gon with interior angle 7/2g, we obtain a hyperbolic structure on a closed surface
of genus g whose associated Fuchsian group is generated by the isometries which pair
the opposite sides.

Quasifuchsian groups By definition, a quasifuchsian group is a quasi-isometric or
quasiconformal deformation of a Fuchsian group. We shall see in more detail what
this means in the next lecture. For the moment, let’s just assume we have a Fuchsian
group I', a Kleinian group G, a group isomorphism y : I' — G and a homeomorphism
¢ : C — C such that ¥(gz) = x(g)1(z) for all z € C and g € T'. It is a deep result of
Marden [Mar74] that ¢ can always be taken to be quasiconformal.
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From the construction, the limit set of a quasifuchsian group is always a topolog-
ical circle and the regular set has two simply connected G-invariant components Q.
The 3-manifold H?/G, being homeomorphic to H? /T, is homeomorphic to S x (0, 1).
However the hyperbolic or conformal structures on the two components QF /G are
now different. The following is a famous result of Bers [Ber]:

Theorem 2.28 (Simultaneous uniformisation) Given any two conformal struc-

+

tures w* on X, there exists a unique quasifuchsian group for which QF/G have the

structures w®. (Here ‘unique’ means ‘up to conjugation in SL(2,C)".)
The limit set of a quasifuchsian group is a fractal:

Theorem 2.29 (Bowen) Suppose that G is quasifuchsian but not Fuchsian. Then
the Hausdorff dimension of A(G) is strictly greater than 1.

Schottky groups Take 2k pairwise disjoint round disks E;, El,i = 1,...,k in C
and choose e; € SL(2,C) such that e; maps the inside of E; to the outside of E!. The
group G generated by ey, ..., e is called a (classical) Schottky group. If we place
a hemisphere over each disk, then we can view the region D in H3 outside all the
hemispheres as a polyhedron in H3. The e; match the sides of D in pairs and D is
a fundamental domain for G acting in H?. It follows that from Poincaré’s theorem
that G is free and discrete. Klein gave a nice direct proof of this fact, often called
the ping-pong theorem. It is good exercise to convince oneself that the 3-manifold
obtained by gluing the faces of D using the side pairings is a genus k handlebody.

As explained in great detail in [MSW], each ‘infinite reduced word’ in the gener-
ators in G corresponds to a nested sequence of images of the disks F;, E!. Each limit
point is the infinite intersection of such a nested sequence. It follows that the limit
set A(G) is a Cantor set and the ordinary set € has a single G-invariant component
which is not simply connected. It is another good exercise to find which curves in (2
correspond to compressing disks in H?/G.

Any Kleinian group has lots of Schottky subgroups. This is based on the fact that
sufficiently high powers of loxodromics have disjoint isometric circles which serve as
the disks from which to construct the group. Based on this we find:

Proposition 2.30 (see [MT] Theorem 2.9)) G is non-elementary iff it contains a
free subgroup on 2 generators.

Just like Fuchsian groups, Schottky groups can be deformed using homeomor-
phisms of C. This does not change the topology of the three manifold. Such groups
are also known as (non-classical) Schottky groups. In fact we have:
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Theorem 2.31 (Maskit, see [MT] Theorem 4.23) The following are equivalent:
1. Mg is a handlebody
2. G is Schottky

3. G 1is free and purely loxodromic

Combination theorems These are important theorems which enable one to build
up complicated groups from simple ones by gluing along surfaces in the boundary.
The fundamental principal is the same as that in the ping-pong theorem. We don’t
have time to go into this here; good accounts can be found in [MT, Kap] and for all
the details see [Mas].
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Lecture 3: Geometrically finite groups

The Mostow rigidity theorem says that a closed hyperbolic 3-manifold is rigid, in
fact is determined up to isometry by the isomorphism class of 71 (M). In this lec-
ture we study a very important class of hyperbolic manifolds with boundary. These
are the geometrically finite manifolds. As we shall see, their deformations are well
understood.

Geometrically finite groups

Definition 3.32 A Kleinian group is geometrically finite if it has a finite sided fun-
damental domain.

As we saw in Corollary 2.26, the side pairings generate the group, so a geometri-
cally finite group is always finitely generated.

Theorem 3.33 A Fuchsian group is finitely generated iff it is geometrically finite.

For the proof, see [Bea]. As was first pointed out by Greenberg, Theorem 3.33 fails
in dimension 3. We shall see why in Lecture 4. Marden systematically investigated
geometrically finite groups in [Mar74]. The first point is to understand the cusps.

Proposition 3.34 ([Mar74, Mar]) If G is geometrically finite then there are only
finitely many cusps. The rank 1 cusps come in pairs; each pair corresponds to a
pairing tube which matches two punctures on Q/G.

This leads easily to
Theorem 3.35 (Marden) G is geometrically finite iff Mg is compact.

Here MY is the Kleinian manifold Mg = (H?* U Q)/G with cusp neighbourhoods
removed, as explained in Lecture 2. Proofs can also be found in [MT].

Definition 3.36 G is (topologically) tame iff H? /G is homeomorphic to the interior
of a compact 3-manifold.

Theorem 3.37 (Marden) A geometrically finite group G is tame.

Marden conjectured that if G is finitely generated, then G is tame, see Lecture 4.
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Ahlfors-Bers deformation theory It turns out that the deformations of geomet-
rically finite groups are completely described in terms of the deformations of Q/G.

Definition 3.38 Let (X1,d;) and (X, dy) be metric spaces. A homeomorphism f :
Xy — Xy is a quasi-isometry if there exists k > 0 such that

di(p,q)/k < dao(f(p), f(q)) < kdi(p, q)
for all p,q € X;.

Definition 3.39 Let U C C be an open set. A homeomorphism f: U — f(U) c C
1s quasiconformal if

i maxg [f(z+re’) — f(2))]
K(z) = lim o £ (2 +rei?) — f(2)]

is bounded on U. It is called K-quasiconformal if K(z) < K for almost all z € U.
The dilatation K¢ of f is the infimum of K for which f is K-quasiconformal.

Proposition 3.40 Every quasi-isometry H? — H? extends to a quasiconformal home-
omorphism of C.

Suppose that G, G, are Kleinian groups and that x : G; — G5 is an isomorphism.
A quasiconformal map ¢ : Q(G;) — Q(Gy) is said to induce x if ¥(g2) = x(9)¥(2)
for all g € Gy and z € C. X is called type preserving if x(g) is parabolic in G iff ¢
is parabolic in G. It is possible to have a quasiconformal map ¢ : Q(G;) — Q(G3)
which induces an isomorphism y : G; — G4 but for which there is no corresponding
quasi-isometry H?/G; — H?/G,. However we have:

Theorem 3.41 (Marden’s isomorphism theorem [Mar74]) Let Gy be a geomet-
rically finite group with MY # 0. Suppose that x : G; — Gy is a type preserving
isomorphism induced by an orientation preserving quasiconformal map ¢ : Q(G1) —
Q(Ga). Then:

1. G4 is geometrically finite.
2. 1 extends to a quasi-isometry H? /G, — H?/Gs.
3. Y extends to a quasiconformal homeomorphism of C.

4. If ¢ is conformal on Q(Gy) then it is Mobius, so that H3 /Gy is isometric to
H3/Gs.
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This result reduces the problem of understanding deformations of hyperbolic
structures on a geometrically finite manifolds to that of understanding the structures
on §2/G. The following extension of Bers’ simultaneous uniformisation theorem 2.28
describes the deformation theory of geometrically finite groups, see [MT, Kap]).

Theorem 3.42 Let M = H?/G be a geometrically finite hyperbolic 3-manifold with
incompressible boundary. Then the quasi-isometric deformation space QI(M) of M
is I1; Teich(S;), where the product runs over the surfaces S; making up Q/G.

If Sy is a topological surface, the Teichmiiller space Teich(Sy) describes the
possible conformal structures on the marked surface Sy. More precisely, a point
in Teich(Sy) is a pair (S,¢) such that S is Riemann surface and ¢ : Sy — S
is a homeomorphism. (5,¢), (5’,¢’) are equivalent if there is a conformal map
f:S — S homotopic to ¢’¢~!. Teichmiiller’s theorem states that for any two points
(S1,01), (Sa, P2) € Teich(Sy), there is a unique quasiconformal map which minimises
the dilatation, called the extremal map. This provides a metric on Teich(Sy). Te-
ichmiiller also showed that if Sy has genus g with b punctures, then Teich(Sy) is

homeomorphic to R69~6+2b,

There are many books on Teichmiiller theory. Brief
summaries suitable to our viewpoint can be found in [O, Kap].

The quasi-isometric deformation space QZ (M) of a 3-manifold M can be defined
in a similar way, see [MT]. We always need the base manifold M (or base surface Sy)
to keep track of the marking on M; otherwise, we might be seeing the same structure
on a surface which differed from the original one by a diffeomorphism which was not
homotopic to the identity. (This is why we restricted to incompressible boundary in

the statement of Theorem 3.42.)

Triply punctured spheres Note that if Sy is a sphere with 3 punctures (so g = 0
and b = 3) then 6g — 6 + 2b = 0. This means that Sy is 7igid. In other words, it
carries a unique hyperbolic structure which cannot be deformed. In fact it is not hard
to prove the following lemma, see [MSW]| Note 7.1:

Lemma 3.43 Suppose that A, B € SL(2,C) are parabolic and that AB is also parabolic.

Suppose their fived points are all distinct. Then there exists C € SL(2,C) such that
1 2 1 0
1 _ -1 _
CAC —(O 1) and C BC —(_2 1).

Convince yourself that this implies that Sy is rigid!
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Convergence of Kleinian groups There are several different ways in which one
might say that Kleinian groups are close. The topology implied in Theorem 3.42 is
essentially that of Gromov-Hausdorff convergence. It is important to specify base-
points. Roughly, hyperbolic manifolds M, M’ with basepoints x € M,z’ € M’ are
close if for large r, the r-balls in M, M’ centred on x, 2’ look ‘almost’ the same. A
more formal definition is that of polyhedral convergence?:
Definition 3.44 Let GG,, be a sequence of Kleinian groups. Then G,, converges poly-
hedrally to the Kleinian group H if the Dirichlet domains D,(G,,) with base point
a € H3 converge to the Dirichlet domain D,(H), uniformly on compact sets in H?,
and if in addition the side pairing transformations of D,(G,) converge to those of
D,(H) in the following sense:

(i) Each face pairing of D,(H) is the limit of face pairings of D,(G,) and

(i1) The limit of any convergent subsequence of face pairings of D,(G,) is a face
pairing of D,(H).

This leads to:

Definition 3.45 Let G,, be a sequence of Kleinian groups. Then G, converges geo-
metrically to the Kleinian group H if:

(i) For each h € H, there is a sequence g, € G,, which converges to h and

(i) If a subsequence g,, € G,, which converges to v € SL(2,C), then v € H.

Polyhedral and geometric convergence turn out to be the same and, modulo a
discussion about base points and conjugation in SL(2,C), are the same as Gromov-
Hausdorft convergence of the corresponding manifolds. It is also the same as conver-
gence of the limit sets:

Theorem 3.46 (Kerckhoff-Thurston, see [MT, Mar]) Suppose the groups G, are ge-
ometrically finite and boundary incompressible, and suppose that G,, converge geomet-

rically to H. Then A(G,) converges to A(H) in the sense of Hausdorff convergence
of closed subsets of C.

There is also a formulation in terms of convergence of regular sets, see for exam-
ple [MT, Mar].

There is another definition of convergence which is more natural if we are thinking
in terms of groups of matrices:

2General references for this section are [MT, Kap, Mar, Thu80].
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Definition 3.47 Let T be a fized abstract group (think T’ = w1 (M) ). Suppose we have
a sequence of homomorphisms p, : I' — G, where G,, is Kleinian. Suppose that for
eachy € T, the sequence p,(7y) converges to a Mébius map p(y). Then G, converges
algebraically to the group Go = {pso(7) : v € I'}. G is called the algebraic limit of
the GG,,.

It is an important and non-obvious fact that the algebraic limit of discrete groups
is discrete. More precisely:

Theorem 3.48 (Chuckrow) Suppose that I" is a non-elementary Kleinian group and
that each p, is an isomorphism to a Kleinian group G,. Suppose that G, converges
algebraically to Go. Then G, is Kleinian and non-elementary and ps 1S an isomor-
phism.

ProoF. This follows from several applications of Jergensen’s inequality Theorem 1.8.
For example, if p, is not injective, there exists g € ' with p.(9) = I. Pick a
loxodromic h € T such that g,h have distinct fixed points. Then (p,(g), pn(h)) is
non-elementary and p,(g) — I. So

e pn(g) — 4] + | Tr pu(g) pu(B) pu(g) ' pu(h) ™ — 2] — 0

which is impossible. [J

The relationship between algebraic and geometric convergence is rather subtle.

Theorem 3.49 (Jorgensen-Marden) Suppose that G,, converges to G, algebraically.
Then there exists a subsequence Gy, which converges geometrically to a Kleinian group
H. Moreover any geometric limit of any subsequence of the groups G, contains G.

If G and H are finitely generated, then there is a sequence of surjective homo-
morphisms 1, : H — Gy, such that lim ), (h) = h for all h € H.

The best situation is when G,, converges both algebraically and geometrically to
the same limit. In this case the convergence is called strong. In general the algebraic
and geometric limits may not agree. What happens is that ‘extra parabolics’ appear
in the limit. Roughly, one can have a sequence of loxodromics h,, converging to a
parabolic h such that certain powers A" also converge to a parabolic h’ with the same
fixed point but with a different translation direction. This mechanism is described
in various places, for example [MT]. There is an explicit example, with pictures,
in [MSW] P. 340 ff. Kerckhoff and Thurston produced a famous example in which
the algebraic and geometric limits differ, on which much subsequent work is based.

It seems likely that the apperance of extra parabolics is the only reason the limit
may not be strong:
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Theorem 3.50 Suppose that p,(I') converges to Go = poo(I') algebraically. The
convergence is strong if either:

(i) pn(T') is geometrically finite for each m and there are no new parabolics (ie
g € Gu is parabolic iff p,(q)pL(g) is parabolic for each n) or

(ii) There are no new parabolics and Q(G) # 0.

A lot of effort has gone into proving that various properties persist in the algebraic
limit. The following great result is the outcome of many years’” work by Thurston,
Brock, Bromberg, Canary, Evans, Ohshika, Souto and others:

Theorem 3.51 ([BS]) The algebraic limit of geometrically finite groups is tame.

Cusp groups Here is a much easier result which we shall need in the next lecture.
It is a simple consequence of Theorem 3.41.

Theorem 3.52 Suppose that G,, = p,(Gy) is a sequence in QT(M) for some geo-
metrically finite manifold M = H?/Gy. Suppose also that the algebraic limit poo(Go)
is geometrically finite but not in QZ(M). Then there is an element g € Go such that
pn(g) is loxodromic but p..(g) is parabolic.

Such groups are called cusp groups, because a geodesic loop which had some def-
inite length in H?3 /Gy has been ‘pinched’ to become parabolic. These new parabolics
all correspond to rank 1 cusps. The existence of cusp groups was first proved by
Bers and Maskit using sequences of quasiconformal deformations. Any ‘reasonable’
collection of curves on the boundary of a hyperbolic 3-manifold can be pinched in this
way. If there are no more loops which can be pinched the group is called maximally
parabolic. Each component of the boundary of such a group is either a cusp torus or
a triply punctured sphere. Such groups are rigid: to see this, double across the triply
punctured spheres in the boundary and apply Mostow rigidity. The limit set of each
triply punctured sphere group is a circle and every component of €2 is a round disk.

If G is quasifuchsian, then H?/G is homeomorphic to Sx (0, 1) for some topological
surface S. Choose a maximal set of pairwise disjoint non-homotopic curves on S
(a pants decomposition). All these curves can be made parabolic by pinching the
corresponding loops on Q7 /G. Q7 /G remains an unpinched surface homeomorphic
to S. By Theorem 3.42, the deformation space of this family of groups is exactly
TeichS. One can parameterise it as a (3g — 3 + 2b) complex dimensional subspace of
the space of all representations m(S) — SL(2,C). This is called the Maskit embedding
of Teichmailler space. If S is a torus with one puncture, the Maskit embedding has
complex dimension one. This is examined in great detail in [MSW].
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Lecture 4: Geometrically infinite groups

What can one say about groups which are not geometrically finite? For many years
they were a mystery, but as a result of remarkable work over the last few years, we
now have an essentially complete picture of what they all are. A systematic reference
for this section will be [Mar].

Recall from the last lecture that a group is called tame if H? /G is homeomorphic
to the interior of a compact 3-manifold. As we saw, any geometrically finite group is
tame.

Conjecture 4.53 (Marden’s tameness conjecture/theorem) FEvery finitely gen-
erated group is tame.

Conjecture 4.54 (Bers’ density conjecture/theorem) FEvery Kleinian group is
an algebraic limit of geometrically finite groups.

Conjecture 4.55 (Ending lamination conjecture/theorem) Fuvery tame group
15 determained up to isometry by its ‘end invariants’.

We shall explain the meaning of ‘end invariants’ later in the lecture.

These conjectures are now all essentially proved. Under the hypothesis of tame-
ness, Bromberg introduced some beautiful ideas to prove Conjecture 4.54 in special
cases. This was extended to the general incompressible boundary case in [BB]. A
completely different proof follows by combining Conjectures 4.53 and 4.55.

Our starting point is a geometrically finite group G with corresponding manifold
M = H3/G. What are all the groups which can be obtained as algebraic limits of
groups in the quasi-isometric deformation space QZ(M)? We think of QZ(M) as
embedded in the larger space of representations (M) — SL(2,C).*> The space of
representations, taken up to conjugacy in SL(2, C), turns out to be a smooth complex
variety R(M) of the ‘expected’ dimension, namely the sum of the dimensions of
the Teichmiiller spaces associated to the components of OMg. It follows from the
simultaneous uniformisation theorem that QZ (M) is an open subset of R(M).

In the last lecture we discussed the geometrically finite groups on 0QZ(M). They
are the cusp groups formed by pinching one or more loxodromic elements until they
become parabolic. This leads to:

3We have to be careful to specify whether or not the representations should be type preserving,
see eg [Kap] for details.
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Theorem 4.56 (Greenberg) There exist Kleinian groups which are not geometrically
finite.

PROOF. A cusp group in which the element g is parabolic lies in the subvariety of
R(M) on which Tr? g = 4. Since there are only countably many possible loops we
can pinch to make cusps, and since each subvariety has complex codimension 1, the
union of these sets cannot be all of OR(M). O

Here is a famous recent result, conjectured by Bers and orginally proved in a
special case by McMullen.

Theorem 4.57 ([CCHS, CH]) Cusp groups are dense on 0QT(M).

0QT (M) is a fascinating object which sadly we do not have time for here. It
appears to have complicated fractal structure. For pictures and an account of the
boundary of the Maskit embedding of Teichmiiller space for the once punctured torus,
see [MSW].

The geometrically finite groups on dQZ(M) are produced by pinching simple
closed curves. Thurston had the wonderful idea that the remaining groups on 0QZ (M)
are produced by ‘pinching’ some other objects which in a certain sense ‘complete’ the
space of simple closed curves on dM. The objects in question are projective mea-
sured laminations, which Thurston used to compactify Teichmiiller space. We digress
to explain very briefly what these are.

Geodesic laminations A standard reference for this section is [FLP], see also [EM,
Thu80]. There is a good brief summary in the appendix of [O].

Let S be a hyperbolic surface. A geodesic (not necessarily closed) on S is simple
if it does not intersect itself. A geodesic lamination on S is a closed set which is
the disjoint union of simple geodesics called its leaves. Such a lamination forms a
partial foliation of the surface. For example, it might consist of finitely many pairwise
disjoint simple closed geodesics. More typically, however, a transversal to a lamination
intersects the lamination in a Cantor set and the components of the complement are
ideal polygons. A lamination is arational if all complementary components are ideal
triangles or punctured bigons. A result of Birman and Series says that any lamination
has Hausdorff dimension 1.

A measured geodesic lamination is a geodesic lamination together with a tran-
verse invariant measure. That means, an assignment of a (finite Borel) measure to
each transversal, which is invariant under the ‘push forward’ map along leaves. For
example, a closed simple geodesic v has an associated transverse measure ¢, which
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assigns to a transversal T the measure i(7),7), ie the number of times 7' intersects
7. More generally, I call a lamination rational* if it is a sum Y, a;0,, where 7; are
pairwise disjoint closed geodesics and a; > 0. Any transverse measure can be scaled
by multiplying by positive scalar. This defines an equivalence relation on measured
laminations. The equivalence classes are called projective measured laminations.

Let ML denote the space of measured laminations on S with the weak topology.
That is, a sequence v, € ML converges to v € ML iff v, (T) converges to v(T') for
every transversal T. ML turns out to be the completion of the rational laminations
in this topology. Thurston showed that ML(S) is a ball of (real) dimension 6g — 6 +
2b. This dimension is no coincidence! The following remarkable result of Thurston
shows that Teichmiiller space can be compactified by adjoining the space of projective

laminations PML(S) [FLP, O].

Theorem 4.58 Suppose that w,, € Teich(S). Then either:
(i) A subsequence w,, converges to a point w., € Teich(S) or
(11) There exists ¢, — 0 and & € ML such that

Cnlu, () — (7, )
for every simple curve v on S.

Here [,(7) is the hyperbolic length of ~ in the hyperbolic surface whose associated
conformal structure is w, and (7, £) denotes intersection number; it is the continuous
linear extension of the geometric intersection number between geodesics to M L. Since
the second condition is unchanged if we scale everything by a > 0, the limit £ really
only depends on its projective class []. We say that w,, converges to [£].

As a special case, suppose that w, — [£] in such a way that along the sequence
w, the length [, (v) of a curve 7 stays bounded. Then, since ¢, — 0, we have
cnly, (7) — 0. This means that i(-y, ) = 0, which means that either ~ is disjoint from
¢ or that £ contains 7 as a closed leaf. This is suggestive that if we degenerated S by
pinching ~, the structures on S would converge to [0,] € PML. (To make a correct
formal statement we also have to control the degeneration of S\ 7.)

Recall that a quasifuchsian group is uniquely specified by the structures w® on
the two components QF /G. Denote this group G(w™',w™).

Theorem 4.59 (Thurston’s double limit theorem) Suppose that p, : m(S) —

SL(2,C) is a sequence of respresentations to the quasifuchsian groups G, = G(w}, w;,)

4This is not universally accepted terminology. It is not the opposite of arational.
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and suppose that wr converge to points [€]F € PML . Suppose also that £* are ara-
tional and that i(§1,€7) # 0. Then p, has a subsequence which converges algebraically
to a geometrically infinite group. The limit group is doubly degenerate and has ending
laminations £7,&7.

We will explain the meaning of the last statement below.

The convex core Before getting to geometrically infinite groups, it is also useful
to look at the convex core of H?/G. By definition, this is the smallest closed convex
subset of H3/G containing all closed geodesics. Alternatively, let C(G) be the convex
hull in H? of the limit set A(G), sometimes called the Nielsen region of G. The convex
core of H? /@ is just C(G)/G. The Nielsen region is H? iff A(G) = C.

Geometrically finite groups can be neatly characterised in terms of their convex
core:

Proposition 4.60 A non-Fuchsian group Kleinian group G is geometrically finite iff
its convex core has finite volume.

The restriction to non-Fuchsian groups is because the convex core of a Fuchsian group
is contained in a single hyperbolic plane, so always has zero volume even if the group
is infinitely generated. A Fuchsian group is geometrically finite iff its Nielsen region
has finite 2-dimensional area. The Nielsen region equals H? unless the group is of
the second kind, that is, A(G) is a proper subset of the circle JH?. In this case,
and assuming that G is finitely generated, the Nielsen region is bounded by axes of
hyperbolic elements which project to closed geodesics which cut off the infinite ends
or funnels on the quotient surface H?/G.

In 3-dimensions, the boundary of the convex core is a union of surfaces. There
is a nice retraction from r : H> U Q — C: from a point z € H? U Q outside C, blow
out expanding balloons (spheres if x € H* and horoballs if x € Q). Then r(x) is the
point at which you first hit C. Since C is convex, r(x) is well defined and it is pretty
obviously continuous and G-invariant. In fact, it provides a homeomorphism between
each component of {2/G and a component of dC/G which it ‘faces’.

Thurston showed that dC/G has much more structure. It is an example of a
pleated surface:

Definition 4.61 A pleated surface in a hyperbolic 3 manifold M consists of a hyper-
bolic surface 33, a geodesic lamination A on X, and a map f : X — M such that:
(i) [ is an isometry between the given metric on ¥ and the induced metric on

f(M).
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(i1) The restriction of f to each leaf of X is an isometry to a geodesic in H?>.
(11i) Each component of X\ X\ maps isometrically to a piece of totally geodesic
plane in M.

The images of the leaves of \ are called the bending lines of the pleated surface.
Roughly speaking, you can think of a pleated surface as a bent surface in H?/G
whose lift to H? rolls out onto H? to give the hyperbolic metric on X.

Theorem 4.62 (Sullivan, see[EM]) If OM is incompressible, then there is a universal
bound on the Teichmiller distance between the hyperbolic metrics on OC/G and on
the corresponding components of Q/G.

Geometrically infinite ends The formal definition of an end of an open 3-manifold
M is a bit messy. It is simplified when there is a compact core: this is a compact
submanifold M, such that the inclusion M. — M is a homotopy equivalence. It is a
deep result of Scott, that any 3-manifold with finitely generated fundamental group
has a compact core. Thist was refined by McCullough to show that if M is hyperbolic,
one can choose the core to have a ‘standard’ shaped boundary in the neighbourhood
of cusps. This is called a relative compact core, see eg [Kap| for details.

We can now define an end of M to be a component of M \ M.. The ends are in
bijective correspondence with the components of 9M,.. An end is topologically tame if
it has a neighbourhood U which is homeomorphic to S x [0, 1) for some surface S; it
is incompressible if S is incompressible. M is called boundary incompressible if every
component of dM, is incompressible.

Recall that M is tame if it is homeomorphic to the interior of a compact 3-
manifold. We have:

Lemma 4.63 M is tame iff each of its ends are tame.

If M is geometrically finite without cusps, then the retraction r provides a homo-
topy equivalence between H?/G and the compact manifold C/G. This can easily be
modified in case of cusps to a retraction to the compact manifold (CNM2)/G. Thus we
can take (CNM2)/G to be the core, so the ends correspond bijectively to components
of C/G. In general, an end is called geometrically finite if it contains a neighbour-
hood which is disjoint from C/G and geometrically infinite otherwise. Thurston and
Bonahon described the structure of geometrically infinite incompressible ends.

Definition 4.64 A sequence of closed geodesics 7, exits the end F if v, C E and if
only finitely many ~, intersect any compact set K C M.
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Here is the key theorem:

Theorem 4.65 (Bonahon [B]) Let M be a boundary incompressible hyperbolic 3-
manifold. Let E be a geometrically infinite end corresponding to a component of
OM,. homeomorphic to a surface S. Then there exists a sequence of closed geodesics
which exit E. The 7, can be taken to be homotopic to simple closed curves on S.
Moreover the projective measured laminations [0.,] converge to a measured lamination
Al € PML(S). The underlying support of A is arational and independent of the
choice of sequence ~,,.

The ‘unmeasured’ lamination Ag whose support is the leaves of [A] is called the ending
lamination of E. If ¢ is any other measured lamination whose support is different
from that of A, then i(\,£) > 0. We can choose the 7, to be of bounded hyperbolic
length.

Bonahon used the existence of this ending lamination to prove that such an end F
is topologically tame. The idea is to construct pleated surfaces ¥, in E for which the
v, are contained in the bending lamination. Being hyperbolic surfaces, these pleated
surfaces have bounded diameter® and also exit the end. They allow one to give E the
required product struture S x [0,1).

Suppose that M is a boundary incompressible hyperbolic 3-manifold. Its end
invariants consist of:

(i) The conformal structures on the components of /G (one for each geometri-
cally finite end) and

(ii) The ending laminations of the geometrically infinite ends.

Theorem 4.66 (Ending lamination theorem [Min03, BCM]) Suppose that M = H? /G
1s a boundary incompressible hyperbolic 3-manifold. Then M 1is uniquely determined
up to isometry by its end invariants.

Marden rightly calls this a ‘blockbuster theorem’. Expositions of parts can also be
found in [Min01, Min02] The recent work on the tameness conjecture allows one to
get rid of the assumption that M is a boundary incompressible. This we have to leave
for Souto’s lectures next week. Here is a closely related consequence.

Theorem 4.67 Suppose that G and Gy are finitely generated Kleinian groups, and
that there is a homeomophism v : C — C which induces a type preserving isomor-
phism x : G1 — Gs. Suppose also that 1 is conformal on Q(G1). Then ¢ is Mdébius.

5This statement has to be suitably modified if there are cusps.
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This should be compared to Sullivan’s rigidity theorem (see eg [MT, Kap|) which
asserts the same result but only under the much stronger assumption that ¢ is qua-
sicomformal.

Manifolds which fibre over the circle Ending laminations are very well illus-
trated with the example of hyperbolic structures on manifolds which fibre over the
circle. Start with a hyperbolisable surface S, and a pseudo-Anosov map ¢ : S — S.
By definition, such a map does not fix any closed curve on the surface. Instead, there
is a pair of measured laminations A* with the property that ¢="(v) — [A\*] in PML.
Thurston constructed a hyperbolic structure on the 3-manifold M = (S x [0,1])/ ~,
where ~ is the equivalence relation which identifies (z, 1) with (¢(x),0), see [O]. The
cyclic cover M of this manifold has fundamental group 7, (S) and is a limit of quasi-
fuchsian groups G(¢"wy, ¢, "wp) where wy is any choice of initial conformal structure
on S. Thus M = H?/G for some Kleinian group G isomorphic to m(S). The map
¢ induces an isometry M — M. M is homeomorphic to S x (—oco,00) and so has
two ends. The geodesic representatives of ¢”(v) in M exit one end of M and those
of ¢, ™(7) the other. Thus the ending laminations of M are exactly the laminations
Rt

G provides a famous example of a Kleinian group whose limit set is a space filling
curve. Involved in the construction of G is the fact that A(G) = C. Let Gy be the
Fuchsian such that H? /Gy has the conformal structure wy. The group G is isomorphic
to Gy. There is a continuous map from S' = A(Gy) to A(G), providing a continuous

A

mapping from the unit circle S! onto the Riemann sphere C.
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