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These notes provides some details on the lectures 2,3,4 on the Ricci flow with
surgery. They are not complete and probably contains some inaccuracies. In-
terested readers can find most exhaustives explanations on the Perelman’s pa-
pers in [KL].

1 Lecture 2: classification of κ-solutions

The aim of these lecture is to give the classification and the description of 3-
dimensional κ-solutions. Let κ > 0 and (Mn, g(t)) a solution of the Ricci flow.
Mn is supposed oriented.

definition 1.1. (M, g(t)) is a κ-solution if

• g(t) is an ancient solution of the Ricci flow

∂

∂t
g(t) = −2Ricg(t), −∞ < t ≤ 0.

• for each t, g(t) is a complete, non flat metric of bounded curvature and
non negative curvature operator.

• for each t, g(t) is κ-noncollapsed on all scales, i.e. if |Rm(g(t))| ≤ 1
r2 on

B = B(p, t, r), then
volg(t)(B)

rn
≥ κ

Exemples: S3 and S2 × R with their standard flow are κ-solutions for some
κ > 0. But S2 ×S1 with the standard flow is not a κ-solution. It is κ-collapsed
at very negative times.
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Some properties of κ-solutions:

• All curvatures of g(t) at x are controlled by the scalar curvature R(x, t).

• For each point x in M , R(x, t) is nondecreasing.

It’s a consequence of the trace Harnack inequality [H93] (compare with
Carlo Sinestrari notes [S05] (6.6)

∂R

∂t
+ 2 < X,∇R > +2Ric(X,X) ≥ 0,

where X is an arbitrary vector field. Thus

sup
M×]∞,0]

R(., .) = sup
M

R(., 0) <∞

and all curvatures are uniformly bounded on M×] −∞, 0].

• R(x, t) > 0 for any (x, t).

It follows from the integrated version of the Harnack Inequality,

R(x2, t2) ≥ exp

(
−d

2
t1(x1, x2

2(t2 − t1

)
R(x1, t1),

for any t1 < t2. Indeed, if R(x2, t2) = 0 for some point (x2, t2), then
R(x1, t1) = 0 for any point (x1, t1) with t1 < t2. Thus g(t) would be flat
for any t.

Tools: compactness theorem, asymptotic solitons, split-
ting

compactness theorem Given any κ-solution (M3, g(t)) and (x0, t0) ∈M×]−
∞, 0], one defines the normalized κ-solution at (x0, t0) by

g0(t) = R(x0, t0)g(t0 +
t

R(x0, t0)
).

We have done a shift in time and a parabolic rescaling such that Rg0
(x0, 0) = 1.

The motivation is :

theorem 1.2 ([P03]I.11.7, [KL]40). For any κ > 0, the set of pointed nor-
malized κ-solutions

{(M, g(.), x), R(x, 0) = 1}
is compact.
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The same result holds with the normalization R(x, 0) ∈ [c1, c2], 0 < c1 ≤ c2 <
∞.

Asymptotic solitons Perelman defines an asymptotic soliton (M−∞, g−∞, x−∞)
of an n-dimensional κ-solution (M, g(t) as follows. Pick a sequence tk → −∞.

theorem 1.3 ([P03]I.11.2). there exists xk ∈ M such that (M, 1
−tk

g(tk −
tkt), xk) (sub) converge to a non flat gradient shrinking soliton(M−∞, g−∞, x−∞),
called an asymptotic soliton of the κ-solution.

Recall that a Ricci flow (M, g(t)) on (a, b), a < 0 < b, is a gradient shrinking
soliton if there exists a decreasing function α(t), diffeomorphisms of M ψt

generated by ∇g(t)ft such that

g(t) = α(t)ψ∗
t g(0), ∀t ∈ (a, b).

The proof strongly uses the reduced length and reduced volume introduced in
[P03]ch.7.

corollary 1.4 (of the compactness theorem). Any 3-dimensional asymp-
totic soliton is a κ-solution.

Proof: The sequence τkR(xk, tk) has a limit R(x−∞, 0) ∈ (0,+∞). Thus the
asymptotic soliton is a parabolic rescaling of the limit of (M,R(xk, tk)g(tk +

t
R(xk,tk)

), xk), a κ-solution. Thus a 3-asymptotic solitons are particular κ-
solutions. Due to their self-similarity, they are much easier to classify.

Strong maximum principle the following will give splitting arguments

theorem 1.5 ([H86]). Let (M3, g(t)) a Ricci flow on [0, T ) such that sectional
curvatures of g(a) are ≥ 0.Then precisely one of the following holds

a) For every t ∈ (0, T ), g(t) is flat.

b) For every t ∈ (0, T ), g(t) has a local isometric splitting R×N2, where N2

is a surface with positive curvature.

c) For every t ∈]a, b[, g(t) has > 0 curvature.

In case b), the universal covering is isometric R ×N2.

classification of 3-asymptotic solitons
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proposition 1.6. The only asymptotic solitons are S2 ×R, S2 ×Z2
R where the

Z2-action is given by the relation (x, s) ∼ (−x,−s), and finite quotients of S3,
with their standard flows.

Proof: Consider an asymptotic soliton (M−∞, g−∞, x−∞) = (M, g(t), x) of a
κ-solution. By the strong maximum principle 1.5 and the non flatness, either
g(t) has strictly positive curvature either it splits locally.

Consider the non compact case. The strictly positive curvature is ruled out by

theorem 1.7 ([P03]II.1.2). There is no complete oriented 3-dimensional non
compact κ-noncollapsed gradient shrinking soliton with bounded (strictly) pos-
itive curvature.

Thus (M, g(t)) has a local splitting and (M̃, g̃(t)) = (N2 × R, h(t) + dx2). As
the splitting is preserved by the flow (N2, h(t)) is a Ricci flow with strictly
positive curvature. It is an exercice to check that it is a κ-solution.

Now there is

theorem 1.8 ([P02]I.11.2). there is only one oriented 2-dimensional κ-solution
- the round sphere.

proof: (heuristic). Suppose that N2 is compact. It can be shown that the
asymptotic soliton N2

−∞ is also compact (same arguments as in [CK04], prop
9.23), thus diffeomorphic to S2. By [H88], a metric with positive curvature
on S2 gets more rounder under the Ricci flow. More precisely, the curva-
tures pinching - the ratio of the minimum scalar curvature and the maximum-
improves, i.e. converge to 1. On the other hand (N2

∞, h−∞(t)) evolves by dif-
feomorphims and dilations hence the curvatures pinching is constant. Thus
for any t ≤ 0, h−∞(t) has constant curvature. Now the curvatures pinching of
(N2, h(t)) improves under the flow as t → 0 and is arbitrary close to 1 when
t → −∞, as the asymptotic “initial condition” (N2

−∞, h−∞(0)) is the round
sphere. The non compact case is ruled out by [KL][.37]. In fact, they give a
proof of 1.8 without solitons. �.

Thus (M̃, g̃(t)) = S2 ×R with a round cylindrical flow. The only non compact
oriented quotient is S

2 ×Z2
R = RP

3 − B3.
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Now consider the compact case. If (M, g(t)) has strictly positive curvature, by
[H82] M is diffeomorphic to a round S3/Γ and g(t) gets more rounder under the
flow. By self-similarity of the metric, it is the round one, as above. We cannot
have a local splitting because the only oriented isometric compact quotients of
S2 × R, S2 × S1 and S2 ×Z S1 = RP

3#RP
3, are not κ-solutions. �

classification of κ-solutions We have the following

theorem 1.9. Any κ-solution (M, g(t)) is diffeomorphic to one of the follow-
ing.

a S2 × R or S2 ×Z2
R = RP

3 − B3, and g(t) is the round cylindrical flow.

b R3 and g(t) has strictly positive curvature.

c A finite isometric quotient of the round S3 and g(t) has positive curvature.
Moreover, g(t) is round if and only if the asymptotic soliton is compact.
If the asymptotic soliton is non compact, M is diffeomorphic to S3 or
RP

3.

Proof of theorem 1.9: Apply again the strong maximum principle to
the κ-solution (M, g(t)). If g(t) locally splits, we have the same classification
as for asymptotic soliton. Suppose g(t) has strictly positive curvature. If it
is compact, M is diffeomorphic to a finite quotient of the round S3. If its
asymptotic soliton M−∞ is compact, it is the round flow on a finite quotient of
S3 by the above classification. Thus the asymptotic initial condition is round
and (M, g(t) is itself a round flow. In a noncompact case M is diffeomorphic to
R

3 by a theorem of Gromoll and Meyer [GM89]. The cases of strictly positive
curvature needs more geometrical control. The proof will be finished below.

More on κ-solutions

We describe the geometry of κ-solutions, which is useful for non round flows.
We ’ll see that large parts of these κ-solution looks like round cylinders.

definition 1.10. Let B(x, t, r) denotes the open metric ball of radius r, with
respect to g(t).
Fix some ε > 0. A ball B(x, t, r

ε
) is an ε-neck, if after rescaling by 1

r2 , it is

ε-close in the C [ε−1] topology to the corresponding subset of the standard neck
S2 × (−1

ε
, 1

ε
), where S2 has constant scalar curvature one. One says that x is

the center of the ε-neck.
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For example, any point in S2 × R is center of an ε-neck but (x, 0) ∈ S2 ×Z2
R

is not center of an ε-neck.

definition 1.11. Let (M, g(.)) be a κ-solution. For every ε > 0 and time t, let
Mε(t) (= Mε) be the set of points which are not center of an ε-neck at time
t.

The geometry of the κ-solutions is described by the

proposition 1.12 ([KL]42.1, strong version of [P02]I.11.8). For all κ >
0, for 0 < ε < ε0, there exists α = α(ε, κ) with the property that for any
κ-solution(M, g(.)), and any time t precisely one of the following holds,

A. Mε = ∅ and (M, g(.)) = S2×R is the round cylindrical flow. So every point
at every time is center of an ε-neck for all ε > 0.

B. Mε 
= ∅, M is non compact and for all x, y ∈Mε, we have R(x)d2(x, y) < α.

C. Mε 
= ∅, M is compact and there is a pair of points x, y ∈ Mε such that
R(x)d2(x, y) > α,

Mε ⊂ B(x, αR(x)−1/2) ∪B(y, αR(y)−1/2),

and every z ∈M\Mε satisfies R(z)d2(z, xy) < α.

D. Mε 
= ∅, M is compact and there is a point x ∈Mε such that R(x)d2(x, z) <
α for any z ∈M .

Preliminary lemmas

A useful fact is

lemma 1.13. Let (M, g(.)) be a κ-solution which contains a line for some t.
Then M = S2 × R and g(t)) is the round cylindrical flow.

proof: Apply the Toponogov splitting theorem ([BBI]10.5.1). If there is a line
at some time t, there is a splitting (M, g(t)) = (N2(t) × R) and the result
follows from the classification of 3-dim. κ-solutions.�

We give some consequences of the compactness theorem 1.2. Roughly the ratio
of the scalar curvature at two points x, y of any κ-solution is controlled by the
normalized distance R(x, t)d2

g(t)(x, y). Note that this expression is invariant by
space dilation.
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lemma 1.14. There exists α : [0,+∞[→ [1,+∞[ depending only on κ such
that for any κ-solution (M, g(.)), for each x, y in M ,

α−1
(
R(x, t)d2

g(t)(x, y)
) ≤ R(y, t)

R(x, t)
≤ α

(
R(x, t)d2

g(t)(x, y)
)

Proof: One can define α on each [n, n + 1[, n ∈ N. Suppose that’s not true
for some integer n. There is a sequence (Mk, gk(.)) of κ-solutions, times tk and

points xk, yk in Mk such that n ≤ R(xk, tk)d
2
g(tk)(x, y)) < n+1 and R(yk ,tk)

R(xk ,tk)
→ 0

or (R(yk ,tk)
R(xk ,tk)

→ +∞). Normalize gk(.) in g̃k(t) = R(xk, tk)gk(tk + t
R(xk,tk)

). One

obtains a sequence of pointed κ-solutions (Mk, g̃k(.), xk) such that R̃(xk, 0) = 1
and d̃2(xk, yk) < n+1. By the compacity theorem, one can extract a convergent
subsequence to a κ-solution (M∞, g∞(.), x∞). Let y∞ ∈ M∞ be the limit of yk.
Then R∞(y∞, 0) = lim R̃(yk, 0) ∈ {0,∞} and we have a contradiction. �

One can give another formulation (see [KL]36.1.5)

lemma 1.15. There exists β : [0,+∞[→ [0,+∞[, continuous, depending only
on κ such that lims→+∞ β(s) = +∞, and for every κ-solution (M, g(.)) and
x, y ∈M , we have R(y)d2(x, y) ≥ β (R(x)d2(x, y)).

Proof: exercice.

remark 1.16. in [P02] and [KL], these results are established before the com-
pactness theorem. Here we use the compactness theorem as a black box. We
have not the time for a proof.

The pattern to use the compactness theorem is the following. You want to
show that some points in κ-solutions have a nice geometry. Suppose they have
not. Consider a sequence of bad points. Take a limit. Show that the limit
contains a line. Thus the limit is the round cylindrical flow and the geometry
is controlled. So it is just before the limit. Let ε0 be a fix small constant, say
ε0 = 1

10000
.

lemma 1.17 ([KL]42.2). For all κ > 0, for 0 < ε < ε0, there exists
α = α(ε, κ) with the followings property. Suppose (M, g(.)) is any κ-solution,
x, y, z ∈ M and at time t we have x, y ∈ Mε and R(x)d2(x, y) ≥ α. Then at
time t either R(x)d2(x, z) < α or R(y)d2(y, z) < α or (R(z)d2(z, xy) < α and
z /∈Mε).
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Proof: Suppose not for some κ, ε. There exists a sequence of κ-solutions
(Mk, gk(.)) , tk ∈]−∞, 0], xk, yk, zk ∈M , xk, yk ∈Mε such that, with quantities
computed at time tk, R(xk)d

2(xk, yk) → +∞ and

R(xk)d
2(xk, zk) → +∞, R(yk)d

2(yk, zk) → +∞ and(R(zk)d
2(zk, xkyk) → +∞ or zk ∈Mε).

Consider first the case where R(zk)d
2(zk, xkyk) → ∞ (up to a subsequence).

We define z′k ∈ xkyk as a point closest from zk. We want to prove that xkyk con-
verge to a line in the limit space of the (renormalized) sequence (Mk, gk(.), z

′
k).

Claim: R(z′k)d
2(z′k, xk) → +∞.

If not, suppose that R(z′k)d
2(xk, z

′
k) ≤ c for a subsequence. Normalize (i.e. shift

time + parabolic rescaling) gk(.) such that R(z′k, 0) = 1. Here we use the same
notation for the normalized metric. Thus we have d2(xk, z

′
k) ≤ c. On the other

hand, as the ratio R(xk)
R(z′k)

is controlled, d2(xk, yk) → +∞, d2(z′k, yk) → +∞
and d2(z′k, zk) → +∞. Extract a subsequence such that (Mk, gk(.), z

′
k) con-

verge to a κ-solution (M∞, g∞(.), z′∞). Thus the segments xkyk and z′k, zk con-
verge to rays x∞ξ and z′∞η, where z′∞ ∈ x∞ξ. Note that anglez′

∞
(ξ, η) =

lim angle′z′k
(yk, zk) ≥ π

2
where angle′ is the comparison angle.

Now we say that there exists r0 ≥ 0 such that every u ∈ z′∞ξ with d(z′∞, u) ≥ r0
is the center of an ε-neck. If not, consider a sequence uk ∈ z′∞ξ such that
d(z′∞, uk) → ∞. Thus R(z′∞)d2(z′∞, uk) → ∞. By lemma 1.15, R(uk)d

2(z′∞, uk) →
+∞ also. Consider a sequence of normalized κ-solution (M∞, g∞,k(.), uk) such
that R(uk, 0) = 1. Thus there is a convergent subsequence and the ray z′∞ξ
converge to a line in the limit. Thus the limit is the round cylindrical flow by
1.13 and uk is the center of an ε-neck for large k.
Let u0 ∈ z′∞ξ such that every point u in u0ξ is the center of an ε-neck. One can
take u0 far enough such that z′∞ is not in the ε-neck centered at u0. Indeed, as
ε0 is small, the length of this ε-neck is approximatively

2

ε
√
R(u0)

=
2

ε
√
R(u0)d(z′∞, u0)

d(z′∞, u0) ≤ d(z′∞, u0)

10

if
√
R(u0)d(z

′
∞, u0) is sufficiently large. Clearly, z′∞ is in none of the ε-neck

centered onu0ξ. The point u0 is included in an embedded 2-sphere S0, image
of a sphere S2 × {∗} by the ε-approximation with the standard neck. Now
every curve from u ∈ u0ξ to z′∞ must exit from all ε-neck centered on u0ξ on
the left side - the side of u0 which is closer to z′∞- and thus must intersect S0.
That means that S0 separates M∞. Moreover M∞ has at least two ends z′∞ξ
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and z′∞η. Thus (M∞, g∞(0)) has a line. Indeed, one can consider a sequence
of geodesic segments with extremities in each end and extract a convergent
subsequence with the help of the intersection with S0. Thus (M∞, g∞(.), z′∞) is
the round cylindrical flow. Thus xk is the center of an ε-neck for large k, con-
tradicting the hypothesis. That proves the claim. The same argument shows
that R(z′k)d

2(z′k, yk) → +∞.

The normalized sequence (Mk, gk(.), z
′
k) converges to (M∞, g∞(.), z′∞) and xkyk

converge to a line in (M∞, g∞(0)). Thus the limit is the round cylindrical flow.
The segment z′kzk is orthogonal to xkyk. Thus its limit is othogonal to the line,
hence is a segment z′∞z∞ of bounded length. Thus R(zk)d

2(zk, z
′
k) remains

bounded, proving the first case.

Now it is clear that there is α such that zk /∈Mε. If not, the same construction
as above produces a limit z∞ is in a round cylindrical flow, thus zk /∈ Mε for
large k.

Proof of proposition 1.12

Let κ, ε > 0 and (M, g(.)) a κ-solution.
Case 1 Mε = ∅, i.e. every point is center of an ε-neck. Fix some x0 ∈ M , an
ε-neck U0 ∼ S2 × [ −1√

R(x0)ε
, 1√

R(x0)ε
] and let S be the image of S2 × {0} . One

shows that if S separates M , (M, g(.)) is the round cylindrical flow. The other
case leads to a contradiction.
Suppose that S separates. Choose point x1 in the left side of ∂U0. There is
an ε-neck U1 centered at x1, thus one can choose x2 in the left side of ∂U1

(the side not in U0). Repeating the argument, one define a sequence (xk, Uk)
on the left of U0 and a sequence (yk, Vk) on the right. Every segment xkyk

cross all U0, . . . , Uk−1, V1 . . . Vk−1. Now, the length of each neck Ul is roughly
2√

R(xl)ε
. Either R(xl) ≤ c for all integer l and then d(xk, x0) ≥ k

2
√

cε
→ ∞.

Either R(xl) → ∞ for a subsequence and then R(xl)d
2(xl, x0) → ∞ thus

R(x0)d
2(x0, xl) → ∞. Using the same argument on the right, one conclude

that 
(xkyk) → ∞. As all segments xkyk intersects U0, there exists a convergent
subsequence and the limit is the line. Thus (M, g(.)) is the round cylindrical
flow as in A.
Suppose that S does not separate. Let M̃ the universal cover of M and S̃ a
lift of S. We claim that S̃ separates. Using a segment between sides of ∂U0,
one can take a loop γ in M intersecting S transversally in one point. Thus γ
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is homotopically non trivial. There is a lift γ̃ of γ intersecting S̃ transversally
in one point, with extremities x1 
= x2. If S̃ does not separate, there is a
curve disjoint from S̃ between x1, x2. Thus there is a loop in M̃ intersecting
S̃ transversally in one point. This is not possible, thus M̃ separates. By the
previous argument, (M̃, ˜g(.)) with the universal flow (which is a κ-solution) is
the round cylindrical flow. Thus (M, g(t)) is a quotient of S2 ×R by a group of
isometries, which contains translations, as S must separate. Thus (M, g(.)) is
covered by S

2 ×S
1 with the round cylindrical flow, but this is not a κ-solution.

Case 2 Mε 
= ∅ and there exists x, y ∈ Mε sucht that R(x)d2(x, y) ≥ α.
By the previous lemma, for z ∈ M either we have z ∈ B(x, αR(x)−1/2) ∪
B(y, αR(y)−1/2) either R(z)d2(z, xy) < α and z /∈Mε. Thus we have C.
Case 3 Mε 
= ∅ and for any x, y ∈Mε, we have R(x)d2(x, y) < α. If M is non
compact, we have B.
If we suppose that M compact, we want to have D. We argue by contradiction.
Fix a point x ∈ Mε. Let z the point of M such that R(z)d2(x, z) is maximal
and suppose that R(z)d2(z, x) ≥ α. Thus z /∈ Mε, that is z is center of an
ε-neck. Consider the middle sphere S of the neck. Either S separates, either
S does not.
If S separates, Mε is on one side. Indeed, if there were points on each side, any
geodesic joigning opposite points should intersect S, thus would have length
≥ 2α√

R(z)
, which is not possible in our case. Now if Mε is on one side, z is not

maximal.
If S does not separate, then all lift S̃ ⊂ M̃ separates, as in case 1. There is a
non trivial loop γ ∈M , which intersects S transversally in one point. As a lift
γ̃ hits an infinite number of S̃ on both sides, it is easy to construct a line in
(M̃, g̃(t)). Thus (M, g(.)) is covered by the round cylindrical flow and we get
a contradiction as in case 1. �

end of the proof of 1.9 Note that κ-solutions on S2×Z2
R and B3 are described

by case B of proposition 1.12. Recall that we suppose the κ-solution compact
and its asymptotic soliton non compact. As case D imply compactness of the
asymptotic soliton, the κ-solution satisfies C. We know that M−∞ = R × S2

or R ×Z2
S

2. Suppose that M−∞ = R × S
2. Choose a sequence (yk, tk) where

tk → −∞ and yk ∈ Mε(tk). Shift in time and parabolic rescale gk in g̃k such
that R̃(yk, 0) = 1. Let (M∞, g∞(.), y∞) be a limit of a subsequence of (M, g̃k, yk)
as k → ∞. We claim that the limit M∞ is non compact. If not, the normalized
distance R.d2 is uniformly bounded along the subsequence (M, g̃k, yk). The
limit of (M, gk(.), xk) is a κ-solution thus −tkR(yk, tk remains controlled in
(0,∞). Then M−∞ is homothetic to M∞ and compact- a contradiction. Now
M∞ is not the round cylinder, otherwise yk would be center of an ε-neck for
large k. Thus M∞ = B3 or RP 3 − B3 and g∞(0) is of type B. Thus for
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large r > 0, B(y∞, r, 0) = B3 or RP 3 − B3 and the boundary ∂B(y∞, r, 0) is
contained in an ε-neck. As (M, g(.)) is of type C and arguing in the same way
for the two “components” of Mε(t), one deduce that for large k, Mε(tk) lies in
the union of two disjoints balls, each diffeomorphic to B3 or RP 3 − B3, that
are joined by a long tube. Thus M is diffeomorphic to the gluing of two such
balls to a large piece of the asymptotic soliton. As M has finite fundamental
group, only one of the balls can be RP 3 −B3, so M = S3 or M = RP 3. In the
case where M−∞ = R ×Z2

R, the same arguments shows that M = RP 3. �

2 Lecture 2: Canonical neighborhoods theo-

rem

Canonical neighborhoods

definition 2.1. the parabolic neighborhood P (x, t, r,∆t) is the set of (x′, t′)
with x′ ∈ B(x, t, r) and t′ ∈ [t, t+ ∆t] or t′ ∈ [t + ∆t, t], according to the sign
of ∆t.

definition 2.2. A parabolic neighborhood P (x, t, r
ε
,−r2) is called a strong ε-

neck if, after shifting in time and parabolic scaling by 1
r2 , it is ε-close to the

parabolic neighborhood P (x, 0, 1
ε
,−1) of the round cylindrical flow S2 × R.

definition 2.3. A metric with bounded curvature on B
3 or RP

3 − B3 such
that each point outside some compact subset is center of an ε-neck is called an
ε-cap.

According to Perelman, an “”important conclusion ” of the classification is the
following. There exists some κ0 > 0 such that each κ-solution is a κ0-solution
or a quotient of the round sphere. Moreover, each κ-solution has local canonical
geometry.

theorem 2.4 ([P03]II.1.5 [KL]53.). There exists some κ0 > 0 such that any
κ-solution is a κ0-solution or a quotient of the round sphere. This implies at
each point of every κ-solution

|∇R| ≤ ηR3/2, |∂R
∂t

| ≤ ηR2 (1)

for some universal η. Moreover there exists an ε0 > 0 such that for all 0 < ε ≤
ε0, one can find C1 = C1(ε) > 0, C2 = C2(ε) > 0 such that for each point (x, t)
in any κ-solution, there is a radius r ∈ [ 1

C1R(x,t)1/2
, C1

R(x,t)1/2
] and a neighborhood

B, B(x, t, r) ⊂ B ⊂ B(x, t, 2r) which falls into one of the four categories:

11



a. B is the maximal time slice of a strong ε-neck

b. B is an ε-cap

c. B is a closed manifold diffeomorphic to S3 or RP 3.

d. B is a closed manifold of constant positive sectional curvature.

furthermore, the scalar curvature in B at time t is in [R(x,t)
C2

, C2R(x, t)], its
volume in cases 1), 2), 3) is greater than C2R(x, t), and in case 3), the sectional

curvature in B at time t is greater than R(x,t)
C2

.

proof: Non compact asymptotic solitons, S2 × R and S2 ×Z2
×R, are κ′0-

solutions for a universal κ′0 > 0. Using the monotonicity of reduced volume,
one find some κ0 > for κ-solutions with non compact asymptotic soliton, i.e
all κ-solutions except spherical ones (see [CZ05]).

remark 2.5. In cases c), d), B is equal to M .

definition 2.6. Let Φ : (−∞,∞) → (0,∞) an increasing function such that
Φ(s)

s
→ 0 as s → ∞. One says that a solution of the Ricci flow has Φ-almost

non negative curvature if Rm(x, t) ≥ −Φ(R(x, t)) for any (x, t).

According to the Hamilton-Ivey pinching theorem ([[H95],[1]],see [KL][appendix
C]), any 3-dimensional solution of the Ricci flow has Φ-almost non negative cur-
vature for some function Φ. More precisely, there is a universal function Φ such
that any solution with R(x, 0) ≥ −1, Rm(x, 0) ≥ −Φ(R(x, 0)), has Φ-almost
non negative curvature. By scaling, any solution satisfies the initial pinching
conditions. Observe that the scalar curvature bounds all curvatures

R + 2Φ(R) ≥ Rm ≥ −Φ(R).

The main result of [P02] is

theorem 2.7 ([P02]I.12.1, (canonical neighborhoods theorem)). Given
ε > 0,κ > 0 and a function Φ as above, there exists r0 = r0(ε, κ,Φ) > 0 with
the following property. If g(t), 0 ≤ t ≤ T , is a solution to the Ricci flow on a
closed 3-dimensional manifold M , which has Φ-almost non negative curvature
and is κ-noncollapsed at scales < r0, then for any point (x0, t0) with t0 ≥ 1 and
Q0 = R(x0, t0) ≥ 1

r2

0

, the parabolic neighborhood P (x0, t0,
1√
εQ0

,− 1
εQ0

) is ε-close

after parabolic scaling by factor Q0 to the corresponding subset of a κ-solution.

12



Roughly speaking, a point (x0, t0) with high scalar curvature has a neigh-
borhood with almost canonical geometry. The size of the neighborhood in
space-time is controlled by the scalar curvature at (x0, t0).

Proof of the theorem By contradiction. Suppose we have sequences rk → 0,
(Mk, gk) solutions to the Ricci flow on [0, Tk], xk ∈ Mk, 1 ≤ tk ≤ Tk such that
Qk := R(xk, tk) ≥ 1

r2

k
but the scalings of P (xk, tk,

1√
εQk

,− 1
εQk

) are not ε-close

to the corresponding subset of a κ-solution. The idea is to show that scalings
of (Mk, gk, xk) by factor Qk converge to a κ-solution. In some sense, the proof
will be an induction on the scale of curvature. There are four steps. Choose
bad points with almost maximal curvature among bad points. Show that the
rescaled metric have bounded curvature on balls. Show that the limit has
bounded non negative curvature and the convergence extends to a backward
time interval. Extend the interval to (−∞, 0].

step 1: choose better bad points We look for a bad point with almost
maximal curvature among previous bad points in space-time. Choose Hk → ∞
such that Hk

Qk
≤ 1

10
. Fix the integer k. Note that by compactness, the scalar

curvature is bounded on Mk × [0, tk]. We call (x, t) ∈ Mk × [1
2
, tk] a bad point

if Q := R(x, t) ≥ 1
r2

k
and P (x, t, 1√

εQ
,− 1

εQ
) is not ε-close to the corresponding

subset of a κ-solution. All others points in Mk × [0, tk] are good points.

Claim: there exists a bad point (x′k, t
′
k) such if (x, t) ∈ Mk × [t′k − Hk

Q′

k
, t′k], where

Q′
k := R(x′k, t

′
k), and R(x, t) ≥ 2Q′

k, (x, t) is a good point.

Possibly, the assertion on (x, t) is empty. To prove the claim, we begin with the
bad point (xk, tk). If the claim hold with (xk, tk), we take (x′k, t

′
k) = (xk, tk).

If not, there is a bad point in Mk × [tk − Hk

Qk
, tk] with scalar curvature ≥ 2Qk.

Replace (xk, tk) by this point and repeat the procedure until it stop.�

Note (xk, tk) the bad point we have choose. Consider (Mk, ḡk(.), (xk, 0)) the
rescaled and shifted sequence, i.e. ḡk(t) = Qkg(tk + t

Qk
) defined on [−Hk, 0] →

(−∞, 0] as k → ∞. Note R̄k the scalar curvature of the rescaled metric.

Step 2 Claim: for any ρ > 0, the scalar curvature R̄k is uniformly bounded on
balls B(xk, ρ) ⊂ (Mk, ḡk(0)).

13



By definition, R̄(xk, 0) = 1 and any (y, t) ∈ Mk × [−Hk, 0] with R̄k(y, t) ≥ 2
has a canonical neighborhood. In particular, the estimates (1) applies with the
universal constant 2η at any such (y, t). For any (x, t) ∈ Mk × [−Hk, 0], set
Q = R̄k(x, t) + 2. Then

R̄k(x
′, t′) ≤ 4Q, ∀(x′, t′) ∈ P (x, t,

1

2ηQ1/2
,− 1

8ηQ
). (2)

Indeed, consider a point (x′, t′) in the parabolic neighborhood such that R̄k(x
′, t′) ≥

2. Consider a path static in space between (x′, t′) and (x′, t) and g(t)-geodesic
between (x′, t) and (x, t). Integrate the estimates along the path until the first
point with scalar curvature 2 or (x, t). This gives the upper bound for R̄k(x

′, t′).

Now consider

ρ0 = sup{ρ > 0, R̄k(., 0) is uniformly bounded on B(xk, ρ) ⊂ (Mk, ḡk(0))}.

By the argument above, ρ0 >
1
4η
> 0. We want ρ0 = ∞. Suppose this is not

true. Using the κ-non collapsing assumption and uniform curvature bounds on
balls B(xk, ρ) due to the Φ-pinching, we obtain C1,α pointed Gromov-Hausdorff
convergence of (B(xk, ρ0), ḡk(0), xk) to a non complete manifold (Z, g∞, x∞) of
non negative curvature. In fact, the bounds above implies convergence of pieces
of Ricci flow on B(xk, ρ)×[−τ(ρ), 0] and thus smoothness of (B(x∞, ρ), g∞). By
hypothesis, there is a (sub)sequence yk ∈ B(xk, ρ0) such that d(xk, yk) → ρ0

and R̄k(yk, 0) → ∞). Let zk ∈ [xkyk] the point closest from yk such that
R̄k(yk, 0) = 2. Thus [zkyk] is covered by canonical neighborhoods. The rays
[xkyk] converge to a ray [x∞y∞) in the metric completion Z̄ of Z and zk converge
to z∞ ∈ [x∞y∞). Then one can show that the metric is almost cylindric around
[z∞y∞) and that the tangent cone Cy∞Z based at y∞ is a non flat metric cone.
On the other hand, around a point z ∈ Cy∞Z such that d(z, y∞) = 1, one
can prove existence of a flow on a backward intervall. A crucial fact is that
Rd2(.y∞ remains bounded in (0,∞). But then we get a contradiction by a
local version of the Strong Maximum Principle of Hamilton. Indeed, writing
∂
∂t
Rm = ∆Rm+Q(Rm) > 0 and considering a plane of zero curvature, we get

negative curvature backward - a contradiction. Thus ρ0 = ∞. �

step 3 By the arguments above, there exists a subsequence of (Mk, ḡk(0), (xk, 0))
which converge in the pointed Gromov-Hausdorff topology to a complete smooth
manifold (M∞, g∞, x∞) of non negative curvature.

Claim: g∞ has bounded curvature and the convergence extends backward in
time.
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A proof by contradiction. Suppose there is sequence yj ∈ M∞ such that
R∞(yj) → ∞. Note that d(x∞, yj) → ∞. Any yj is limit of a sequence
of points in (Mk, ḡk(0)) with curvature ≈ R∞(yj) > 2, thus has a canonical
neighborthood, which must be an ε-neck. Moreover, the radius of these necks
is going to zero as d(x∞, yj) → ∞. But any complete manifold of non neg-
ative curvature has an exhaustion by compact convex sets Cs, s > 0, where
Cs1

⊂ Cs2
if s1 ≤ s2. Moreover, there is a one lipschitz map from Cs2

onto
Cs1

(see [S77],[GS81] and [G97]). One get a contradiction with the decreas-
ing radius of the neck. Now using the bounded curvature of the limit and
the estimates (2), one that for some τ < 0, curvature on B(xk, ρ) × [τ, 0] is
bounded by a constant independant of ρ, for any large k. Thus we obtain
pointed convergence of ḡk(t) on Mk×]τ, 0] to a Ricci flow on M∞×]τ, 0]. �

Suppose τ is minimal for this property.

step 4 Claim: τ = −∞. A proof by contradiction. We suppose that the
maximum of the scalar curvature of (M∞, g∞(t) converge to ∞ as t → τ .
From the trace Harnack Inequality [S05] (5.5), we get for any τ < t < 0,
∂
∂t
R∞(x, t) ≥ −R∞(x,t)

t−τ
. Thus, integrating from t to 0,

R∞(x, t) ≤ R∞(x, 0)
−τ
t− τ

≤ Q
−τ
t− τ

where Q is the maximum of the scalar curvature on (M∞, g∞(0)). The same
bound holds for the Ricci curvature. By a standard argument, for any g(t)-
geodesic γ, ∫

γ

Ricg(t)(γ̇, γ̇)ds ≤ const.

√
Q

−τ
t− τ

where the constant does not depend of γ,t. By integration, one deduces there
exists C > 0 such that

|dg∞(t)(x, y) − dg∞(0)(x, y)| ≤ C.

Recall that the minimum of the scalar curvature is increasing, thus R∞(., t) = 1
for some point. If M∞ compact, g∞(0) has bounded diameter. As the diameter
of g∞(t)) remains bounded, the arguments of step 2 apply using this point as
a base point. Now suppose M∞ non compact. Sketch of the proof : argue
by contradiction. find for t close to τ a necklike part U with small radius,
separating two points x, y far from U . Here small means smaller thant the
lower bound on the injectivity radius at time 0. As the curvature is positive,
distance decreases thus the radius of U at time 0 is smaller than the injectivity
radius and cannot separate x and y which remains far by 2 - a contradiction.
�.
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corollary 2.8. Given a small ε > 0,κ > 0 and Φ, there exists r = r(ε, κ,Φ) > 0
with the following property. If g(t), 0 ≤ t ≤ T , is a solution to the Ricci flow on
a closed 3-dimensional manifold M , which has Φ-almost non negative curvature
and is κ-noncollapsed at scales < r, then for any point (x, t) with t ≥ 1 and
Q = R(x, t) ≥ 1

r2 , has a open neighborhood B as in 2.4.

proof: Fix a small ε′(ε/2) > 0 such that 1
ε′

≤ 2C1(ε/2) and ε′ < C2(ε/2)−1,
where C1,2(ε/2) are constants from 2.4. Define r := r0(ε

′, κ, ϕ) given by 2.7.
Thus if Q = R(x, t) ≥ r−2, t ≥ 1, then P (x, t, 1√

ε′Q
,− 1

ε′Q
) is ε′-close after

parabolic scaling by factor Q to a parabolic neighborhood P (x̄, 0, 1√
ε′
,− 1

ε′
) in

a κ-solution. Here R(x̄, 0) = 1. Apply the theorem 2.4 at (x̄, 0), with data
ε/2. There exists s ∈ [ 1

C1

, C1] and B, B(x̄, 0, s) ⊂ B ⊂ B(x̄, 0, 2s) with

ε/2 almost canonical geometry. Pullback B ⊂ B(x̄, 0, 2C1) ⊂ P (x̄, 0, 1√
ε′

) by

the previous ε′-approximation into P (x, t, 1√
ε′Q
,− 1

ε′Q
). Canonical geometry

holds with respect to ε for some constant C ′
1,2(ε). In particular estimates 2

holds (change η) and positivity of curvature is preserved in c) d). Moreover,
neighborhood c) or d) cover M . �.

3 Lecture 3: The flow at a singular time and

the surgery procedure

In this section we consider M = (M × [0, T ), g(t)) a smooth solution of the
Ricci flow, where M is connected, such that the curvatures of g(t) are not
bounded as t → T < ∞. We suppose that the flow satisfies the following
assumptions.

Assumptions

1) there exists κ, ρ0 > 0 such that g(t) is κ-noncollapsed at scales below ρ0.

2) g(t) has Φ-almost nonnegative curvature for some function Φ. (say Φ-
pinching assumption).

3) For a small ε > 0, there exists r > 0 such that if R(x, t) ≥ r−2, (x, t)
has a canonical neighborhood. One says that the solution satisfies the
(r, ε)-neighborhood assumption.
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Remark: Given M, theorem [P02]I.4.1 provides κ, ρ0 > 0 in 1). The Hamilton-
Ivey theorem provides a universal Φ0 for normalized initial g(0). By scaling,
this gives a function ϕ for M. Given ε, κ,Φ, corollary 2.8 provides r such
that any (x, t) with R(x, t) ≥ r−2, t ≥ 1, has a canonical neighborhood. This
applies to a scaling of M such that T > 1 and curvature ≤ r−2 on [0, 1]. Scale
back to M.

Perelman describes g(t), t→ T , as follows. Recall that the minimum of R(., t)
is nondecreasing.

definition 3.1. Let

Ω = {x ∈M,R(x, .) < C(x)} ,
the set of points where R(x, t) remains bounded.

1st case: Ω = ∅.

In this case, R(x, t) → ∞ at each point. Precisely,

lemma 3.2. for any C > 0, there exists t0 ∈ [0, T ) such that

R(x, t) > C, ∀x ∈ M, ∀t ∈ [t0, T ).

proof: suppose C > r−2. At points where R ≥ r−2, the (r, ε)-neighborhood
assumption gives the estimates | ∂

∂t
R| < ηR2. Thus if R(x, t1) ≤ C and

R(x, t2) ≥ 2C, integration gives |t2 − t1| ≥ 1
2ηC

. The curvature needs a definite

time to double. By hypothesis, R(x, ti) → ∞ for some subsequence ti thus
R(x, t) ≥ C for t ≥ T − 1

2ηC
:= t0. �

Take t0 such that R(x, t0) ≥ r−2 for all x ∈ M . Thus each point has a
canonical neighborhood which is an ε-neck, an ε-neck or a closed manifold of
positive curvature. If the latter appears at least one time, by [H82] g(t) shrinks
to a point as a round metric and M is diffeomophic to a finite quotient of S3.
Suppose there is only ε-necks or ε-caps. As the curvature is bounded at t0,
ε-necks and ε-caps have volume bounded below > 0. Thus one can cover M
by a finite number of them. The only possibilities are

• only ε-necks =⇒ M = S2 × S1.

• 2 ε-caps + ε-necks =⇒M = S
3,RP

3 or RP
3#RP

3 = S
2 ×Z2

S
1.
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where the Z2-action identifies (x, θ) ∼ (−x,−θ). Thus

Ω = ∅ =⇒ M ∈ {S
3/Γ,RP

3#RP
3, S2 × S

1}.

2nd case: Ω 
= ∅.
lemma 3.3. Ω is open in (M, g(0)).

Proof let x ∈ Ω. By definition, there exists C(x) (≥ r−2) such that R(x, t) ≤
C(x), ∀t < T .

Claim: there exists a > 0 such that R(., t) ≤ 2C(x) on B(x, t, a) forall t < T .

Fix some t < T and y ∈ M such that R(y, t) ≥ 2C(x). Let x0 ∈ xy, the g(t)
segment, closest from y such that R(x0, t) = C(x). Integrating estimates (2)
on x0y one find dg(t)(x0, y) ≤ 1

η
√

2C(x)
:= a.

By the Φ-pinching assumption, | ∂
∂t
g(t)| = | − 2Ricg(t)| ≤ C.g(t) on B(x, t, a),

where C = 2(n − 1)C(x) is independant of t, although the ball vary with the
metric.

Claim: there exists t0 ∈ [0, T ) such that ∀t ∈ [t0, T ), B(x, t0,
a
2
) ⊂ B(x, t, a).

Indeed, choose t0 such that eC(T−t0) < 4. Then for any y ∈ B(x, t0,
a
2
),

dg(t)(x, y) ≤ 2dg(t0)(x, y) < a for any t ∈ [t0, T ).

Thus we have R(., t) ≤ 2C(x) on B(x, t0,
a
2
) hence B(x, t0,

a
2
) ⊂ Ω. Now

all curvatures are bounded on M × [0, t0] thus g(0) and g(t0) are bilipschitz
equivalent. �.

lemma 3.4. g(t) extends smoothly to Ω as t→ T .

Proof: let x ∈ Ω. By previous claims and Φ-pinching assumption, there exists
t0 < T and a > 0 such that Rmg(t) is uniformly bounded on B(x, t0, a) ⊂ Ω,
forall t ∈ [t0, T ). Hence all g(t) are (1 + O(T − t0))-bilipschitz equivalent on
B(x, t0, a)×[t0, T ). Moreover, by Shi’s estimates [S89], all covariant derivatives
DkRm(., t) are uniformly bounded on B(x, t0, a)× [t0, T ). Thus g(t) converges
on B(x, t0, a) to a smooth metric g(T ). On deduces convergence to g(T ) on Ω,
uniform on compact sets. �.

Remark:
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1. R(x, T ) → ∞ as t→ ∂Ω in (M, g(0)).

2. the metric g(T ) is locally complete but not globally à priori. Accord-
ing to Perelman, the diameter of a connected component of (Ω, g(T )) is
probably bounded.

3. As M is compact, Ω 
= M (else g(T ) has bounded curvature) thus Ω has
no compact component (M is connected).

4. vol(Ω, g(T )) ≤ limt→T vol(M, g(t) <∞. Indeed,

d

dt
volg(t)(M) =

∫
−Rg(t)dvg(t) ≤ −Rmin(0)volg(t)(M),

as Rmin(t) is increasing, thus volg(t)(M) ≤ volg(0)(M)e−Rmin(0)t.

5. g(T ) is κ-noncollapsed at scale below ρ0.

6. Φ-pinching holds at g(T ).

7. the (r′, ε′)-neighborhood assumption holds on (Ω, g(T )) for slighter r′ < r
and ε′ > ε. We keep going use r and ε.

Fix a small 0 < ρ < r and define

Ωρ :=

{
x ∈ Ω|R(x, T ) ≤ 1

ρ2

}

Claim: Ωρ is compact in (Ω, g(T )). Indeed given ρ, by the estimates above
there exists t0(ρ) ∈ [0, T ),a(t0, ρ) > 0 such that

R(y, t) ≤ 2

ρ2
, ∀(y, t) ∈ B(x, t0, a) × [t0, T ], ∀x ∈ Ωρ.

Thus g(T ) and g(t0) are bilipschitz equivalent in a g(t0)-neighborhood of Ωρ,
and Ωρ is g(t0)-closed in M thus compact. dg(t0)(Ωρ,M − Ω) ≥ a > 0.

If Ωρ = ∅, for t close to T any (x, t) ∈ M × {t} has a canonical neighborhood
so the arguments of the 1st case apply. Suppose Ωρ 
= ∅. Recall that Ω 
= M
has no compact component.

Structure of Ω − Ωρ
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Let x0 ∈ Ω−Ωρ. It has a canonical neighborhood U0 which must be an ε-neck
or an ε-cap by remark 3).

i) x0 ∈ U0 an ε-cap = B3 or RP
3. Do the following procedure. Choose

x1 ∈ ∂U0. If x1 /∈ Ωρ then x1 ∈ U1 an ε-neck, otherwise x1 would be in a cap
and in a compact component of Ω. Choose x2 ∈ ∂U1 ∩U c

0 and iterate. Observe
that the distance between two consecutive points xi, xi+1 is approximatively
R(xi,T )−1/2

ε
and the volume of each ε-neck is approximatively R(xi,T )−3/2

ε
. As the

volume of g(T ) is bounded,

• either there is some xn ∈ Ωρ.

• either the process does not terminate and R(xi, T ) → ∞.

ii) x0 ∈ U0 an ε-neck. Define as above on the right ( resp. left ) of U0 x
+
i ∈ ε-

neck U+
i (resp. x−i ∈ ε-neck U−

i ) as long as they not hit Ωρ or an ε-cap. By
the compactness argument U−

i and U+
i cannot close up Thus on each side,

• either there is some xn ∈ Ωρ.

• either there is some xn in an ε-cap.

• either the process does not terminate and R(xi, T ) → ∞.

and there is at most one ε-cap. Perelman introduces the following terminology.

definition 3.5. A metric on S2 × (−1, 1) such that each point is center of an
ε-neck is called

ε-tube , if the curvatures says bounded, or

ε-horn , if the curvatures says bounded on one side, or

double ε-horn , if the curvatures are unbounded on each side.

A metric on B3 or RP
3−B3 such that each point outside some compact subset is

center of an ε-neck is called an capped ε-horn if the curvatures are unbounded.
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From the discussion abobe, we see that

- any component of Ω disjoint from Ωρ is a double ε-horn or a capped ε-horn.

- other components are ε-horn with one boundary in Ωρ, ε-tubes with one
boundary in Ωρ, the other in Ωρ or an ε-cap. These components contains
ε-necks of curvature ρ−2, thus are finitely many.

capped ε-horn

double ε-horn

ε-horn

ε-tube

Ωρ

Ωρ

Ωρ

The set Ω at time T
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The surgery procedure

The surgery is the result of two things:

1. Thraw away all components of Ω disjoint from Ωρ.

2. Truncate each ε-horn along a 2-sphere of scalar curvature h−2 - a param-
eter that defined in the flow with δ-cutoff below - thraw away the com-
ponent with unbounded curvature, and paste a ball B3 on the boundary
2- sphere.

truncate ε-horns

ε-tube

Ωρ

Ωρ

Ωρ

and glue caps B3

of Ω disjoint from Ωρ

The surgery

Thraw away components

Denote by M+
T the (maybe nonconnected) manifold obtained. Let Ω1, Ω2,. . . ,

Ωi the connected component of Ω disjoint from Ωρ. Then

M+
T =

i⋃
j=1

Ω̄j

where Ω̄i is the one point compactification of Ωi. To relate the topology of M
and M+

T consider a time t0 close enough to T such that each point x ∈ Ω−Ωρ

has curvature R(x, t0) ≥ 12
ρ2 . Then one can cover Ω−Ωρ with a finite number of

ε-necks or ε-caps. Any double ε-horn is included in an ε-tube ending in Ωρ or
in an ε-cap. Each capped ε-horn comes from an ε-cap and ε-tube ending in Ωρ.
The ε is diffeomorphic to B

3 of RP
3 − B̄3 thus troncate the tube is the inverse
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of the connected sum with B3 or RP
3. Any ε-horn comes from an ε-tube with

one boundary in Ωj ⊂ Ωρ, the other in a cap or Ωk ⊂ Ωρ. The situation of a
cap is as above. If the second boundary is in Ωk 
= Ωj the truncation is the
inverse of the connected sum of Ω̄j#Ω̄k. If Ωk = Ωj , then the truncation is the
inverse of the connected sum with S2 × S1. Thus M is diffeomorphic to the

connected sum of the Ω̄j with a finite number of S3, RP
33

and S2 × S1.

Ricci flow with δ-cutoff

The metric on the added cap is defined by interpolation of the metric of the
truncated horn with a metric on a standard cap. The gluing must preserve
the assumptions true at time T - the κ-noncollapsing, the Φ-pinching and the
(r, ε)-neighborhood. It will be possible if the necklike metric in the truncated
neck is sufficiently close to the standard one. The proximity is specified by a
small parameter δ > 0.

definition 3.6. A standard cap is a metric ḡ defined on R3 with the following
properties. It is rotationally symetric with positive curvature, spheric in a
neighborhood of 0 and cylindrical like S

2 × R at distance ≥ 5 from 0 - the
scalar curvature is one in those parts. It is defined by a dr2 + ψ(r)2dS2 with,
say, ψ(r) = sin(r) ≤ π

4
, ψ(r) = 1 for r ≥ 2.

We fix such a metric on R3 that will be the standard cap. For any small 0δ < δ0,
we define an interpolation between any δ-neck and an almost standard cap -
a standard cap slightly deformed by a conformal transformation. Consider a
cylinder S2 × (−5, 5) with a metric g which is δ-close to the cylinder part of
the standard cap ḡ. We define a new metric g̃ on S2×(−5, 5), as on the picture.

1

e−2f(ψg + (1 − ψ)ḡ)

g e−2f ḡe−2fg
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g̃ =

⎧⎪⎪⎨
⎪⎪⎩

g if z ≤ 0
e−2fg if z ∈ [0, 1]
e−2f(ψg + (1 − ψ)ḡ) if z ∈ [1, 2]
e−2f ḡ if z if ≥ 2

where, if z is the radial cordonate of S2 × (−5, 5),

- ψ(z) is a smooth positive function, such that f(z) = 1 if z ≤ 1 and f(z) = 0
if z ≥ 2.

- f(z) is defined by

f(z) =

{
0 if z ≤ 0

e−
p
z if z ≥ 0

The aim of the conformal transformation is to give strictly positive curvature to
e−2fg when z ≥ 1 and in the same time preserving the ϕ-pinching assumption
on S2 × [0, 1]. The formula for the curvatures of g and e−2fg are (see [B87])

K̃ij = e2fKij+e
2f (∂jf∂jf+∂if∂if)−|df |2e2f+e2f (Hessf(∂j, ∂j)+Hessf(∂i, ∂i))

where ∂i, ∂j are orthonormal vectors for g. The idea is to have f ′′(z) >> f ′(z)
when nonzero hence the dominant term is the Hessian. This is possible for
0 < δ < δ0 and the parameter p(δ0) > 0 sufficiently large. In fact the minimum
of the sectional curvatures and the scalar curvature of e−2f g̃ is increasing with
z. Fixing the parameter p, µ > 0, δ1 > 0 such that for any 0 < δ < δ1, the
sectional curvatures of e−2fg are > µ for z ≥ 1. Now if δ1 is small enough the
sectional curvatures of e−2f (ψg + (1 − ψ)ḡ) are strictly positive by continuity.

Now to find the δ-neck where the surgery is done, we use the following: Fix a
small δ > 0, ρ = δr.

lemma 3.7. [P03]II.4.3 There exists a radius h, 0 < h < δρ, depending only
on ε, δ,ρ, ϕ such that for each point x in a ε-horn of (Ω, g(T )), if R(x, T ) =

Q ≥ h−2, the parabolic neighborhood P (x, t, Q−1/2

δ
,−Q−2) is a strong δ-neck.

The surgery with (r, δ)-cutoff is defined as follows. Fix a small δ > 0 and
ρ = δr, define h as above. in each ε-horn of (Ω, g(T )), find a δ-neck of scalar
curvature h−2 and paste an almost standard cap as above. The others as-
sumptions - κ-noncollapsed and (r, ε)-neighborhoods) are also preserved by
the (r, δ)-cutoff.
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