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The goal of these lectures were to introduce some fundamental tools and results

in the theory of Gromov-Hausdorff convergence of Riemannian manifolds. Details of

the proofs of the results presented here can be found in the following basic references

: [BBI], [Fa], [Fu], [GLP], [G], [Pet1].

1 Gromov-Hausdorff distance between metric spaces

In the 1980’s Gromov extended the classical Hausdorff distance between compact

subspaces of a metric space to a distance between abstract metric spaces, called the

Gromov-Hausdorff distance (G-H distance for short). However two metric spaces

which are close for this distance generally can be topologically different.

All metric spaces in this section will be separable metric space (X, d).

For a a subset A ⊂ X the ε-neighborhood around A is B(A, ε) = {x ∈ X :

d(x, A) < ε}.

The classical Hausdorff distance between two subsets A, B in a metrix space X is:

dX
H(A, B) = inf{ε : A ⊂ B(B, ε) and B ⊂ B(A, ε)}

This metric is only a pseudo-metric since dX
H(A, B) = 0 implies only that the closures

A = B. However for closed subspaces of X it is a metric.

Gromov extended this notion to the setting of abstract metric spaces by getting
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ride of the role of the ambient space and found important applications to differential

geometry.

Definition 1.1 (Gromov-Hausdorff distance) Two metric spaces X and Y are

ε-near in the Gromov-Hausdorff topology if there is a metric on the disjoint union

X t Y which extends the metrics on X and Y such that dXtY
H (X, Y ) ≤ ε.

Then define : dGH(X, Y ) = inf{ε such that X and Y are ε-near}.

From the definition it follows that dGH(X, Y ) = dGH(Y,X) and that dGH(X,Y )

is finite if X and Y are compact. We will show below that dGH is a distance ont the

set of compact metric spaces.

First we give some basic examples which show that often one can give upper bound

for the G-H distance, even if it is usually very hard to compute it exactly.

Example 1.2 Let X and Y be compact metric spaces with diam(X) ≤ D and

diam(Y ) ≤ D. Then dGH(X, Y ) ≤ D/2.

Example 1.3 Let (X = {x1, . . . , xk}, d) and (Y = {y1, . . . , yk}, d) be finite metric

spaces with k points. If |d(xi, xj)−d(yi, yj)| < ε for all 1 ≥ i, j ≤ k, then dGH(X, Y ) ≤
ε

Example 1.4 A map f : X → Y between two compact metric spaces is called a

ε-Hausdorff approximation if the following holds:

(i) Y is the ε-tube around f(X).

(ii) ∀u, v ∈ X, |d(f(u), f(v))− d(u, v)| < ε

If f : X → Y is a ε-Hausdorff approximation then dGH(X, Y ) ≤ 3ε.

The following examples show that the Hausdorff dimension is not is not continuous

with respect to the Gromov-Hausdorff topology.

Example 1.5 Let X be a compact space with a metric g. Then (X, λd) converges to

a point for the Gromov-Hausdorff distance when λ → 0.

Example 1.6 Consider the unit sphere S3 ⊂ C2 with the standard S1-action induced

by C∗. The quotient π : S3 → S3/S1 = S2 is the Hopf fibration, where S2 ⊂ R3 is

the standard sphere with curvature 4. The finite cyclic subgroup Zn ⊂ S1 of order
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n acts freely and orthogonally on S3. One denotes by S3/Zn = Ln the lens space

obtained. As n → ∞, the subgroup Zn fills up S1 and the 3-dimensional lens spaces

Ln converge for the Gromov-Hausdorff distance to the 2-dimensional base S2 of the

Hopf fibration. This phenomenon is called a collapse because the dimension of the

limit space is smaller than the dimension of the spaces in the sequence. We will come

back to this phenomenon latter on.

Example 1.7 Let Xn = { 1
n
(p, q) : p ∈ Z, q ∈ Z}, then Xn with the induced metric

from R2 converges for the Hausdorff-Gromov metric to R2.

In the unit cube [0, 1]3 ⊂ R3 consider the subspace Xn = {(x, y, z) ∈ [0, 1]3}, where

at least two coordinates are of the form p
n
, p ∈ Z. Then Yn = ∂Xn is a surface in R3

which fills up [0, 1]3 as n → ∞. This phenomenon is called an explosion, since the

limit space has larger dimension than the spaces in the sequence.

Let M be the set of isometry classes of compact metric spaces, then dGH is a

distance on M and :

Theorem 1.8 (M, dGH) is a metric space which is separable and complete.
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2 Gromov’s precompactness theorem

In order to state Gromov’s precompactness criterion we need the following definitions:

Definition 2.1 Let X be a compact metric space and ε > 0 a real number:

A ε-net is a finite set of points Zε in X such thaT X = B(Z, ε).

Define Cov(X, ε) has the minimal number of points of a ε-net in X.

Lemma 2.2 Let X, Y ∈ M such that dGH(X,Y ) ≤ δ. Show that Cov(X, ε + 2δ) ≤
Cov(Y, ε).

The following precompactness criterion for subset C inM is important and very useful

:

Theorem 2.3 A subset C ⊂M is precompact for the Gromov-Hausdorff topology iff

there is a function N : (0, β) → (0,∞) such that : ∀ ε > 0 and ∀ X ∈ C one has

Cov(X, ε) ≤ N(ε).

Exercise 2.4 Let N : (0, β) → (0,∞) be a function and let CN ⊂M be the class of

compact metric spaces X such that Cov(X, ε) ≤ N(ε),∀ ε ∈ (0, β). Show that CN is

compact.

We present now two important applications of Gromov’s precompactness criterion

to Riemannian geometry.

2.1 Riemannian manifolds with a lower bound on the injec-

tivity radius

The injectivity radius inj(M, x) of a Riemannian manifold M at a point x is the max-

imal radius r so that the exponential expx : B(0, r) ⊂ TxM → M is an embedding.

The injectivity radius of M is inj(M) = infx∈M inj(M, x).

Denote by R(n, δ, v) the set of closed, connected Riemannian manifolds of dimen-

sion n with injectivity radius inj(M) ≥ δ > 0 and volume vol(M) ≤ v.

The following result is a consequence of croke’s isoperimetric inequality [Cro], see

also [Cha, 6.6]:
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Proposition 2.5 Let M be a closed Riemannian n-manifold. If inj(M) ≥ δ, there

is a constant c(n) depending only on the dimension n such that vol(B(x, r) ≥ c(n)rn

for any 0 < r ≤ δ/2 and any x ∈ M .

Given a Riemannian manifold M ∈ R(n, δ, v) one chooses a maximal set {B(xi, ε/2)}
of disjoint balls in M . Then the set of balls {B(xi, ε)} covers M and one gets that

Cov(M, ε) ≤ 2nv
c(n)

ε−n. Thus Gromov’s criterion applies to show:

Corollary 2.6 The set R(n, δ, v) is precompact in M for the Gromov-Hausdorff

topolopgy.

2.2 Riemannian manifolds with a lower bound on the Ricci

curvature

For our second application of Gromov’s precompactness criterion we consider the

set R(n, k, D) of closed, connected Riemannian manifolds of dimension n with Ricci

curvature RicM ≥ k(n− 1) and diameter diam(M) ≤ v.

The Ricci curvature reflects important informations on the growth of the volume

of the balls in M .

Theorem 2.7 (Bishop-Gromov) Let Mbe a complete Riemannian n-manifold with

RicM ≥ k(n − 1). Then for every point x ∈ M the quantity vol(B(x,r))
vk(r)

is decreasing

with respect to r, where vk(n, r) denotes the volume of a geodesic ball in the space

form of contant sectionnal curvature k and of dimension n.

In particular : vol(M)
vol(B(x,r))

≤ vk(n,D)
vk(n,r)

≤
R
[0,r] sinhn−1(

√
|k|t)dtR

[0,D] sinhn−1(
√
|k|t)dt

for any 0 < r < D.

Therefore as above Cov(M, ε) ≤ vk(n,D)
vk(n,r)

≤ c(n, k, D)ε−n. Gromov’s criterion applies

once more to show:

Corollary 2.8 The set R(n, k, D) is precompact in M for the Gromov-Hausdorff

topolopgy.

2.3 Dimension of the limit space

We have shown that every sequence in R(n, δ, v) or R(n, k, D) subconverges in M,

but a priori the limit space may not be a manifold and may have a dimension different

from n. Here we show that in both cases the dimension of the limit space stays ≤ n,
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so no explosion can occures like in examples 1.7. However the example 1.6 shows

that collapse may occure in R(n, k, D), even with pinched sectionnal curvature. We

will show that no collapse can occure in R(n, δ, v), this points out the importance of

controlling the injectivity radius.

We first recall the definition of the(covering) dimension of a topological space:

Definition 2.9 The (covering) dimension of a topological space X is ≤ n if every

locally finite, open covering of X admits a refinement such that no point in X belongs

to more than n + 1 open subsets. The dimension dim(X) is the smallest integer n

such that X has dimension ≤ n.

The (covering) dimension of a n-dimensional manifold is n.

For a metric space there is another concept of dimension which has a more metric

flavour. Both concept coincides for a compact n-dimensional manifold

Definition 2.10 For a compact metric space X the Hausdorff dimension is:

dimH(X) = limsupε→0
log(Cov(X, ε))

− log(ε)

This metric dimension can take non integral values for Cantor sets. It is related

to the usual (covering) dimension by the following inequality due to Pontriagin et

Schnirelmann [PS]: for a compact metric space X, dim(X) ≤ dimH(X).

Proposition 2.11 Let {Mi} be a sequence of closed Riemannian n-manifolds which

converges in the Gromov-Hausdorff topology to a compact metric space X.

(1) If {Mi} ⊂ R(n, δ, v) then dim(X) = dimH(X) = n. So no collapse, nor explosion

occures.

(2) If {Mi} ⊂ R(n, k, D) then dim(X) ≤ dimH(X) ≤ n. So no explosion occures,

but collapses are possible.

The fact that in both cases (1) and (2) dimH ≤ n follows immediatly from the

bound Cov(M, ε) ≤ cε−n, where the constant c depends only of the dimension n and

the bounds given on the injectivity and the volume, or on the Ricci curvature and

the diameter.

The fact that in case (1) the dimension cannot decrease is more subtle: it uses

the notion of (n− 1)-diameter and a local contractibility argument, see [Pet2].

As a consequence of Perelman’s stability theorem for Alexandrov spaces with lower

curvature bound (see [BBI,Chap. 10.10] ) one obtains:
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Corollary 2.12 The set of closed, connected Riemannian n-manifolds M with KM ≥
−1, inj(M) ≥ δ > 0 and vol(M) ≤ v contains only finitely many homeomorphism

types.

Instead of working in the general class of compact metric spaces we could have

work in the smaller class of length spaces:

Definition 2.13 Let X be a compact metric space. A continuous map ` : [0, a] → X

is a minimizing geodesic if d(`(u)− `(v)) = |u−v| holds for each 0 ≤ u ≤ v ≤ a. The

space X is a length space if two points in X can be joined by a minimizing geodesic.

An easy application of Ascoli-Arzela ’s theorem shows that a Gromov-Hausdorff

limit of length spaces is a length space.
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3 Riemannian manifolds with pinched curvature

First we introduce a new topology on the set of metric spaces called the Lipschitz

topology.

Definition 3.1 Let X and Y be two metric spaces.

For a map f : X → Y let dil(f) = supx6=y
d(f(x),f(y))

d(x,y)
denote the dilatation of f . It

is finite for a lipschitz map.

A homeomorphism f : X → Y is said bilipschitz if both dil(f) and dil(f−1) are

finite

Exercise 3.2 Let f : M → N be a C1-map between two compact Riemannian mani-

folds. Show that dil(f) = supx∈M ‖df(x)‖.

Definition 3.3 (Lipschitz distance) Let X and Y be metric spaces. Define the

Lipschitz distance dL(X, Y ) between X and Y as:

dL(X, Y ) = inf{| log(dil(f))| + log(dil(f−1)|, ∀ bilipschitz homeomorphism f : X →
Y }

dL(X, Y ) = ∞ if X and Y are not bilipschitz homeomorphic.

Proposition 3.4 Let M be the set of isometry classes of compact metric spaces, then

dL is a distance on M.

The next proposition shows that Lipschitz convergence implies Gromov-Hausdorff

convergence. Hence the Gromov-Hausdorff topology is weaker than the Lipschitz

topology on M.

Proposition 3.5 Let {Xn}n∈N and X be compact metric spaces in M.

(i) Assume that limn→0 dGH(Xn, X) = 0. Then given ε > 0 and η > 0, for any η-

discrete ε-net Zε ⊂ X there is a sequence of εn-nets Zεn
n ⊂ Xn such that limn→0 dL(Zεn

n , Zε) =

0 with 0 ≥ εn − ε → 0.

(ii) Conversely assume that ∀ε > 0 there is a ε-net Zε ⊂ X and a sequence of ε-nets

Zε
n ⊂ Xn such that limn→0 dL(Z − nε, Zε) = 0. Then limn→0 dGH(Xn, X) = 0.

Part (ii) of the above proposition immediatly implies the following:

Corollary 3.6 Let Let {Xn}n∈N and X be compact metric spaces inM. If limn→0 dL(Xn, X) =

0, then limn→0 dGH(Xn, X) = 0.
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3.1 Rigidity theorem

In general the Lipschitz topology is stronger than the Gromov-Hausdorff topology.

However in the setting of Riemannian manifolds with pinched sectional curvature

both topology coincides.

More precisely, let M(n, δ, v) be the set of Riemannian n-manifolds M with

a pinched sectional curvature |KM | ≤ 1, a lower bound on the injectivity radius

inj(M) ≥ δ > 0 and an upperbound on the volume vol(M) ≤ v. Then two Rieman-

nian manifolds in M(n, δ, v) which are sufficiently nearby in the Gromov-Hausdorff

topology are in fact bilipschitz homeomorphic: this the content of the following result

due to Gromov[GLP], (see also [G], [Ka]).

Theorem 3.7 (Rigidity Theorem) Given ε > 0 there is a constant η(n, δ, v, ε) >

0 such that if dGH(M, N) ≤ η for M and N in M(n, δ, v), then dL(M, N) ≤ ε.

The proof of this theorem goes back in fact to Cheeger’s finiteness Theorem [Che],

[Pe1] which now is a consequence of it and of Gromov’s precompacness theorem:

Corollary 3.8 (Finiteness Theorem) Up to diffeomorphism there are only finitely

many manifolds in M(n, δ, v).

Another important corollary is the following convergence theorem due to Gromov

[GLP], [Pe2]:

Corollary 3.9 (Convergence Theorem) Every sequence {Mk}k∈N in M(n, δ, v)

subconverges in the Lipschitz topology to a smooth manifold M with a C0 metric

tensor. Moreover M is diffeomorphic to Mk for k sufficiently large.

The regularity of the metric tensor on the limit manifold M can be improved to

obtain a C1,1-metric tensor on M see [GW], [Pe2], [Pu].

3.2 Pointed topologies

Gromov-Hausdorff or Lipschitz convergences, as defined above, are too restrictive,

because one may be interested in sequences Xn with diamXn →∞. Such a sequence

cannot converge to a compact space in any reasonable sense. For instance, intuitively,

a sequence of round 2-spheres of radius n should converge to E2. But if Xn is obtained
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by gluing a round 2-sphere of radius n to a round 3-sphere of radius n (the union

occurring at a single point), then what should lim Xn be: E2 or E3?

This problem is solved by considering sequences of pointed spaces, i.e. pairs (X, x)

where X is a metric space and x is a point of X. This works well when the spaces

considered are proper (which means that metric balls are compact.)

Definition 3.10 Let (Xn, xn) be a sequence of pointed proper metric spaces and

(X, x) be a pointed proper metric space. Then (Xn, xn) converges to (X, x) for the

pointed Gromov-Hausdorff topology if for every R > 0

lim
n→∞

dGH(B(xn, R), B(x, R)) = 0.

If the limit exists, it is unique up to isometry. The next example illustrates the

importance of the choice of basepoint in a hyperbolic context.

Example 3.11 Let M be a noncompact hyperbolic manifold. Set Xn = M and choose

xn ∈ M .

• When the sequence xn stays in a compact subset of M , (Xn, xn) subconverges

to some (X∞, x∞) with X∞ isometric to M .

• When xn goes to infinity in a cusp of maximal rank (dim M − 1), (Xn, xn)

converges to a line. The cusp is a warped product of a compact Euclidean

manifold with a line, and the diameter of the Euclidean manifold containing xn

converges to zero as xn goes to infinity.

• When xn goes to infinity in a geometrically finite end of infinite volume, (Xn, xn)

converges to a hyperbolic space of dimension dim M . This holds true because

one can find metric round balls BRn(xn) with Rn →∞.

Here is the version of Gromov’s precompactness criterion for pointed metric spaces:

For a metric space X and for constants R > ε > 0, let Cov(X, R, ε) denote the

maximal number of disjoints balls of radius ε in a ball of radius R in X.

Theorem 3.12 (Precompactness criterion) A sequence of pointed metric geodesic

spaces (Xn, xn) is precompact for the pointed Hausdorff-Gromov topology if and only

if, for every ε > 0 and R > 0, Cov(Xn, R, ε) is bounded on n.

In an analogous way there is a notion of Lipschitz convergence for pointed proper

metric spaces:
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Definition 3.13 (Pointed Lipschitz convergence) A sequence of pointed proper

metric spaces (Xn, xx) converges to a proper metric space (X, x) for the pointed Lip-

schitz topology if for every R > 0

lim
n→∞

dL(B(xn, R), B(x, R)) = 0.

Remark 3.14 When (Xn, xn) → (X, x) for the pointed Lipschitz topology, if the limit

X is compact, then for n large enough Xn is bilipschitz homeomorphic to X.

Then one has the following compactness theorem:

Theorem 3.15 (Compactness Theorem) The set Mδ of complete Riemannian

n-manifolds M with bounded sectional curvature |KM | ≥ 1 and lower bound on the

injectivity radius inj(M) ≥ δ > 0 is compact for the bilipschitz topology.
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4 Thick/Thin decomposition

A phenomenon which has received much attention in all dimensions from geometers

is the notion of collapse : we say that a family of Riemannian metrics on a manifold

collapses with bounded geometry if all the sectional curvatures remain bounded while

the injectivity radius goes uniformly everywhere to zero.

Example 4.1 (Berger spheres) Let π : S3 → S2 be the Hopf fibration and g the

standard metric on S3. Let gε be the metric obtained after rescaling by ε the metric g

in the direction tangent to the fibres.

It means that for a tangent vector v ∈ TxS3, gε(x)(v, v) = εg(x)(v, v) if dπx(v) =

0, while gε(x)(v, v) = g(x)(v, v) if v is orthogonal to the Hopf fibre. Moreover

sup(0,1] |Kgε| ≤ 1.

If we put on S2 a Riemannian metric with constant curvature equal to 4, then

limε→0 dGH((S3, gε), S2) = 0.

This example can be generalized to any isometric locally free S1-action on a closed

Riemannian manifolds. For example any flat torus T n collapses to any small dimen-

sional torus T k with k < n by rescaling the metric on some of the S1 factors. These

examplee turn out to be basic.

Cheeger and Gromov [CG1,CG2] have proved that a necessary and sufficient con-

dition for a manifold to have such a collapse with bounded geometry is the existence

of a ”generalized torus action” which they call an F -structure. F stands for “flat” in

this terminology. Intuitively an F -structure corresponds to different tori of varying

dimension acting locally on finite coverings of open subsets of the manifold. Certain

compatibility conditions on these local actions on intersections of these open subsets

will insure that the manifold is partitioned into disjoint orbits of positive dimension.

Definition 4.2 A pure F -structure F of positive rank k > 0 on a manifold M is

a partition of M into compact submanifolds (leaves of variable dimension) which

support an affine flat structure. Moreover M has an open covering {Uα} such that

the partition induced on some regular finite covering πα : Ũα → Uα coincides with the

orbits of a smooth affine action of the k-dimensional torus Tk on Ũα.

Two pure F -structures F1 and F2 are compatible if either F1 ⊂ F2 (i.e. every leaf

of F1 is an affine submanifold of a leaf of F2) or F2 ⊂ F1.
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Definition 4.3 A F -structure F on a manifold M is an open covering {(Uα,Fα)}
of M where Fα is a pure F -structure on Uα such that Fα and Fβ are compatible on

Uα ∩ Uβ.

The rank of F is the minimum rank of the local F -structures Fα.

A more precise definition of an F -structure can be given using the notion of sheaf

of local groups actions.

A compact orientable 3-manifold M with an F -structure admits a partition into

orbits which are circles and tori, such that each orbit has a saturated subset. It

follows from the definition of F -structure that such a partition corresponds to a

graph structure on M (see [Ro], [Wa]).

Another description of the family of all graph manifolds is that they are pre-

cisely those compact three manifolds which can be obtained, starting with the family

of compact geometric non-hyperbolic three-manifolds, by the operations of connect

sum and of glueing boundary tori together. Thus they arise naturally in both the

Geometrization of 3-manifolds and in Riemannian geometry.

The following theorem is a precise version of Cheeger-Gromov’s thick/thin decom-

position (see [CFG, Thm.1.3 and 1.7] for a proof). We recall that the ε-thin part of

a Riemannian n-manifold (M, g) is the set of points F(ε) = {x ∈ M , inj(x, g) < ε}

Theorem 4.4 For each n, there is a constant µn, depending only on the dimension

n, such that for any 0 < ε ≤ µn and any complete Riemannian n-manifold (M, g)

with |Kg| ≤ 1, there exists a Riemannian metric gε on M such that:

(1) The ε-thin part F(ε) of (M, gε) admits an F -structure compatible with the metric

gε, whose orbits are all compact tori of dimension ≥ 1 and with diameter < ε.

(2) The Riemannian metric gε is ε-quasi-isometric to g and has bounded covariant

derivatives of curvature, i.e. it verifies the following properties:

• e−εgε ≤ g ≤ eεgε.

• ‖∇g −∇gε‖ ≤ ε, where ∇ and ∇gε are the Levi-Civita connections of g and gε

respectively.

• ‖(∇gε)kRgε‖ ≤ C(n, k, ε), where the constant C depends only on ε, the dimen-

sion n and the order of derivative k.
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Using Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] one can prove the fol-

lowing proposition which is the analogue in bounded curvature of Jørgensen’s finite-

ness theorem [Th, Chap. 5], which states that all complete hyperbolic 3-manifolds

of bounded volume can be obtained by surgery on a finite number of cusped hyper-

bolic 3-manifolds. The finiteness of hyperbolic manifolds with volume bounded above

and injectivity radius bounded below is a particular case of Cheeger finteness theo-

rem, while the Margulis lemma takes the place of the Cheeger-Gromov thick/thin

decomposition [CG2, Thm.0.1].

Proposition 4.5 Let M be a closed Riemannian n-manifold with |KM | ≤ 1 and

vol(M) ≤ v. Then M has a decomposition M = N ∪ G into two compact n-

submanifolds such that:

• G admits an F -structure such that ∂N = ∂G is an union of orbits.

• N belongs, up to diffeomorphism, to a finite set N (n, v) of smooth, compact,

orientable n-manifolds.
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