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cone-3-manifold of curvature κ: metric space
locally modelled on the κ-cone over a spherical
cone-surface ∼= S2

=

Σ

disk transverse to Σ

sector in M2
κ disk with cone-point

glue!

αi

generalizes notion of geometric orbifold, where
cone-angles are of the form 2π/n, n ≥ 2



cone-angles ≤ 2π ⇒ curvature bounded below

by κ in the triangle comparison sense

cone-angles ≤ π ⇒ singular locus Σ a trivalent

graph

topological type of C := homeomorphism type

of the pair (C,Σ)

local rigidity holds :⇔ the deformation space

of hyperbolic (spherical) cone-manifold struc-

tures is locally parametrized by the vector of

cone-angles

global rigidity holds :⇔ the isometry type of

C is determined by the topological type of C

and the vector of cone-angles



1. The hyperbolic case

Theorem [Kojima]: Global rigidity holds for

hyperbolic cone-3-manifolds with cone-angles

≤ π and singular locus a link.

Proof:

Decrease cone-angles to 0 using

Theorem [Hodgson-Kerckhoff]: Local rigidity

holds for closed hyperbolic cone-3-manifolds

with cone-angles ≤ 2π and singular locus a link.

and the techniques used in the proof of the

cyclic case of the Orbifold Theorem.

Then use Mostow rigidity for complete hyper-

bolic 3-manifolds of finite volume to deduce

global rigidity.



Theorem [W.]: Global rigidity holds for closed

hyperbolic cone-3-manifolds with cone-angles

≤ π in the general case.

Proof:

Follow the same strategy as Kojima: decrease

cone-angles to 0, then use Mostow rigidity.

cone-angles 0 ⇔ complete hyperbolic 3-manifold

of finite volume, possibly with totally geodesic

boundary consisting of thrice punctured spheres

Geometry of links of singular vertices changes:

α + β + γ > 2π ⇔ spherical S2(α, β, γ)

α + β + γ = 2π ⇔ horospherical E2(α, β, γ)

α + β + γ < 2π ⇔ hyperspherical H2(α, β, γ)



Local deformation theory:

Theorem [W.]: Local rigidity holds for hyper-
bolic cone-3-manifolds of finite volume with
cone-angles ≤ π, at most finitely many ends
which are (smooth or singular) cusps with com-
pact cross-sections �= E2(π, π, π, π), and possi-
bly with totally geodesic hyperbolic turnover
boundary.

Proof:

Let M = C \ Σ be the smooth part and

E = so(TM) ⊕ TM

= M̃ ×Ad◦hol sl2(C)

the flat bundle of infinitesimal isometries.

Step 1: Prove H1
L2(M, E) = 0 using analysis on

manifolds with conical singularities (Cheeger,
Brüning-Seeley).

Step 2: Analyze the variety of representations
of π1(M) into SL2(C) near the holonomy of a
hyperbolic cone-manifold structure.



Study of degenerations:

Geometry of hyperbolic cone-manifolds with

diam(C) ≥ D > 0 and cone-angles ≤ α < π

according to Boileau, Leeb and Porti:

thin parts: ∃ a short list of local models for the

thin part of C (smooth Margulis tubes, tubes

around closed singular geodesics, umbilic tubes

with turnover cross-sections)

thickness: ∃ r = r(D, α) > 0 such that C con-

tains an embedded smooth standard ball of ra-

dius r.

thickness ⇒ no collapse

finiteness: vol(C) < ∞ ⇒ C has at most

finitely many ends, all of which are (smooth

or singular) cusps with compact cross-sections,

i.e. T2 or E2(α, β, γ).



Finishing the proof (the essential step):

Given a family of hyperbolic cone-3-manifolds

(Ct)t∈(t∞,1] with cone-angles (tα1, . . . , tαN) and

C1 = C, show that this family extends to the

closed interval [t∞,1]!

Schläfli’s formula: vol(Ct) ↗ as t ↘ t∞

⇒ diam(Ct) ≥ D

Kojima’s straightening argument: vol(Ct) ≤ V

Boileau, Leeb and Porti: The only possible de-

generations are tubes around closed (smooth

or singular) geodesics opening into rank-2 cusps.

These cusps can be closed via hyperbolic Dehn

surgery (in the setting of hyperbolic cone-3-

manifolds).



2. The finite-volume case

The same proof yields the following result in

the finite-volume case:

Theorem [W.]: Global rigidity holds for hy-

perbolic cone-3-manifolds of finite volume with

cone-angles ≤ π, at most finitely many ends

which are (smooth or singular) cusps with com-

pact cross-sections �= E2(π, π, π, π), and possi-

bly with totally geodesic hyperbolic turnover

boundary.

Remark: If cone-angles are < π, by the finite-

ness result of Boileau, Leeb and Porti, this is

is the general finite-volume case.



3. The spherical case

Theorem [W.]: Global rigidity holds for closed
spherical cone-3-manifolds with cone-angles ≤
π which are not Seifert fibered.

Proof:

Use the spherical version of local rigidity, i.e.

Theorem [W.]: Local rigidity holds for closed
spherical cone-3-manifolds with cone-angles ≤
π which are not Seifert fibered.

and the fact that spherical cone-3-manifolds
don’t collapse according to Boileau, Leeb and
Porti to deform cone-angles to π.

Global rigidity follows from

Theorem [de Rham]: A spherical structure on
a closed 3-orbifold is unique.


