Rigidity of cone-3-manifolds

ICTP Trieste

June 2005
cone-3-manifold of curvature κ : metric space locally modelled on the κ-cone over a spherical cone-surface $\cong S^{2}$

sector in \mathbf{M}_{κ}^{2}

disk with cone-point
generalizes notion of geometric orbifold, where cone-angles are of the form $2 \pi / n, n \geq 2$
cone-angles $\leq 2 \pi \Rightarrow$ curvature bounded below by κ in the triangle comparison sense
cone-angles $\leq \pi \Rightarrow$ singular locus Σ a trivalent graph
topological type of $C:=$ homeomorphism type of the pair (C, Σ)
local rigidity holds $: \Leftrightarrow$ the deformation space of hyperbolic (spherical) cone-manifold structures is locally parametrized by the vector of cone-angles
global rigidity holds $: \Leftrightarrow$ the isometry type of C is determined by the topological type of C and the vector of cone-angles

1. The hyperbolic case

Theorem [Kojima]: Global rigidity holds for hyperbolic cone-3-manifolds with cone-angles $\leq \pi$ and singular locus a link.

Proof:

Decrease cone-angles to 0 using

Theorem [Hodgson-Kerckhoff]: Local rigidity holds for closed hyperbolic cone-3-manifolds with cone-angles $\leq 2 \pi$ and singular locus a link.
and the techniques used in the proof of the cyclic case of the Orbifold Theorem.

Then use Mostow rigidity for complete hyperbolic 3-manifolds of finite volume to deduce global rigidity.

Theorem [W.]: Global rigidity holds for closed hyperbolic cone-3-manifolds with cone-angles $\leq \pi$ in the general case.

Proof:

Follow the same strategy as Kojima: decrease cone-angles to 0 , then use Mostow rigidity.
cone-angles $0 \Leftrightarrow$ complete hyperbolic 3-manifold of finite volume, possibly with totally geodesic boundary consisting of thrice punctured spheres

Geometry of links of singular vertices changes:
$\alpha+\beta+\gamma>2 \pi \Leftrightarrow$ spherical $\mathbf{S}^{2}(\alpha, \beta, \gamma)$
$\alpha+\beta+\gamma=2 \pi \Leftrightarrow$ horospherical $\mathbf{E}^{2}(\alpha, \beta, \gamma)$
$\alpha+\beta+\gamma<2 \pi \Leftrightarrow$ hyperspherical $\mathbf{H}^{2}(\alpha, \beta, \gamma)$

Local deformation theory:

Theorem [W.]: Local rigidity holds for hyperbolic cone-3-manifolds of finite volume with cone-angles $\leq \pi$, at most finitely many ends which are (smooth or singular) cusps with compact cross-sections $\neq \mathrm{E}^{2}(\pi, \pi, \pi, \pi)$, and possibly with totally geodesic hyperbolic turnover boundary.

Proof:

Let $M=C \backslash \Sigma$ be the smooth part and

$$
\begin{aligned}
\mathcal{E} & =\mathfrak{s o}(T M) \oplus T M \\
& =\tilde{M} \times_{\text {Adohol }} \mathfrak{s l}_{2}(\mathbb{C})
\end{aligned}
$$

the flat bundle of infinitesimal isometries.
Step 1: Prove $H_{L^{2}}^{1}(M, \mathcal{E})=0$ using analysis on manifolds with conical singularities (Cheeger, Brüning-Seeley).

Step 2: Analyze the variety of representations of $\pi_{1}(M)$ into $\mathrm{SL}_{2}(\mathbb{C})$ near the holonomy of a hyperbolic cone-manifold structure.

Study of degenerations:

Geometry of hyperbolic cone-manifolds with $\operatorname{diam}(C) \geq D>0$ and cone-angles $\leq \alpha<\pi$ according to Boileau, Leeb and Porti:
thin parts: \exists a short list of local models for the thin part of C (smooth Margulis tubes, tubes around closed singular geodesics, umbilic tubes with turnover cross-sections)
thickness: $\exists r=r(D, \alpha)>0$ such that C contains an embedded smooth standard ball of radius r.
thickness \Rightarrow no collapse
finiteness: $\operatorname{vol}(C)<\infty \Rightarrow C$ has at most finitely many ends, all of which are (smooth or singular) cusps with compact cross-sections, i.e. T^{2} or $\mathbf{E}^{2}(\alpha, \beta, \gamma)$.

Finishing the proof (the essential step):

Given a family of hyperbolic cone-3-manifolds $\left(C_{t}\right)_{t \in\left(t_{\infty}, 1\right]}$ with cone-angles $\left(t \alpha_{1}, \ldots, t \alpha_{N}\right)$ and $C_{1}=C$, show that this family extends to the closed interval $\left[t_{\infty}, 1\right]$!

Schläfli's formula: $\operatorname{vol}\left(C_{t}\right) /$ as $t \searrow t_{\infty}$
$\Rightarrow \operatorname{diam}\left(C_{t}\right) \geq D$
Kojima's straightening argument: $\operatorname{vol}\left(C_{t}\right) \leq V$
Boileau, Leeb and Porti: The only possible degenerations are tubes around closed (smooth or singular) geodesics opening into rank-2 cusps.

These cusps can be closed via hyperbolic Dehn surgery (in the setting of hyperbolic cone-3manifolds).
2. The finite-volume case

The same proof yields the following result in the finite-volume case:

Theorem [W.]: Global rigidity holds for hyperbolic cone-3-manifolds of finite volume with cone-angles $\leq \pi$, at most finitely many ends which are (smooth or singular) cusps with compact cross-sections $\neq \mathrm{E}^{2}(\pi, \pi, \pi, \pi)$, and possibly with totally geodesic hyperbolic turnover boundary.

Remark: If cone-angles are $<\pi$, by the finiteness result of Boileau, Leeb and Porti, this is is the general finite-volume case.
3. The spherical case

Theorem [W.]: Global rigidity holds for closed spherical cone-3-manifolds with cone-angles \leq π which are not Seifert fibered.

Proof:

Use the spherical version of local rigidity, i.e.
Theorem [W.]: Local rigidity holds for closed spherical cone-3-manifolds with cone-angles \leq π which are not Seifert fibered.
and the fact that spherical cone-3-manifolds don't collapse according to Boileau, Leeb and Porti to deform cone-angles to π.

Global rigidity follows from

Theorem [de Rham]: A spherical structure on a closed 3-orbifold is unique.

