Minimal Hyperbolic 3-Manifolds and Character

Varieties

Steven Boyer

June 21, 2005

Work joint with Michel Boileau and Shicheng Wang

• 3-mflds: compact, connected, orientable, irred.

Definition

• Say V^3 dominates W^3 , written

 $V \geq W$

if there exists a non-zero degree map

$$f: (V, \partial V) \to (W, \partial W)$$

• Say V strictly dominates W if $V \ge W$ but $V \not\cong W$.

Examples

- (1) $\partial V \cong S^1 \times S^1 \Rightarrow V \ge S^1 \times D^2$
- (2) V, W closed and $\pi_1(W)$ finite implies $V \ge W$.

Thus " \geq " not a partial order (eg. $S^3 \geq P^3 \geq S^3$).

If $f: V \ge W$, Gromov's inequality

$$\|V\| \ge d(f)\|W\|$$

implies that it is a partial order when restricted to

 $\{V : V \text{ has at least one hyperbolic piece }\}$

Definition

$$V \text{ is minimal if } V \geqq W \Rightarrow \begin{cases} |\pi_1(W)| < \infty & \text{ if } \partial V = \emptyset \\ W \cong S^1 \times D^2 & \text{ if } \partial V \cong S^1 \times S^1 \end{cases}$$

Before we discuss examples, recall that

 The PSL₂(ℂ) representation variety of a finitely generated group Γ is the set

$$R_{PSL_2}(\Gamma) = Hom(\Gamma, PSL_2(\mathbb{C}))$$

endowed with the compact-open topology. It is a complex, affine algebraic set in a natural way.

- $PSL_2(\mathbb{C})$ acts on $R_{PSL_2}(\Gamma)$ by conjugation.
- The $PSL_2(\mathbb{C})$ character variety of Γ is the set

 $X_{PSL_2}(\Gamma) = R_{PSL_2}(\Gamma) / / PSL_2(\mathbb{C})$

In other words, $\mathbb{C}[X_{PSL_2}(\Gamma)] = \mathbb{C}[R_{PSL_2}(\Gamma)]^{PSL_2(\mathbb{C})}$.

•
$$R_{PSL_2}(V) = R_{PSL_2}(\pi_1(V)), X_{PSL_2}(V) = X_{PSL_2}(\pi_1(V))$$

• If V^3 is small, then

$$\dim_{\mathbb{C}}(X_{PSL_2}(V)) = \begin{cases} 0 & \text{if } \partial V = \emptyset \\ 1 & \text{if } \partial V \cong S^1 \times S^1 \end{cases}$$

Examples

1) $\partial V \cong S^1 \times S^1$

- (a) punctured torus bundles whose monodromies are not proper powers.
- (b) hyperbolic twist knot exteriors M

<u>Idea</u> There is only one non-trivial curve in $X_{PSL_2}(M)$ (Burde) and M covers only itself.

(c) the exterior M of the (-2, 3, n) pretzel knot is minimal iff $n \not\equiv 0 \pmod{3}$.

<u>Idea</u> There is only one non-trivial curve in $X_{PSL_2}(M)$ if $n \not\equiv 0 \pmod{3}$ (Mattman). When $n \equiv 0 \pmod{3}$ there are two, the extra one coming from a strict domination $M \ge T_{2,3}$. Also, M covers only itself.

(d) the exterior of the $\frac{p}{q}$ rational knot is not minimal in general (Ohtsuki-Riley, Sakuma). If $M_{\frac{p}{q}} \geq W$, then $W \cong M_{\frac{p'}{q'}}$ for some p' which divides p. Can use $PSL_2(\mathbb{C})$ character variety methods to show that if $M_{\frac{p}{q}} \geq M_{\frac{p'}{q'}}$, then either $M_{\frac{p}{q}} = M_{\frac{p'}{q'}}$ or p > p'. In particular

 $p \text{ prime } \Rightarrow M_{\frac{p}{q}} \text{ minimal.}$

2) $\underline{\partial V} = \emptyset$ (Reid-Wang)

(a) $V = M \cup M'$ where M = M' trefoil exteriors glued together so that $\mu = \phi'$ and $\phi = \mu'$.

<u>Idea</u> All representations to $PSL_2(\mathbb{C})$ have finite cyclic image. Thus V is minimal in \mathcal{M} where

 $\mathcal{M} = \{ V : V \text{ Haken or admits a geometric structure} \}$

(b) $V = M(\frac{1}{2})$ where M is the exterior of the figure 8 knot.

Idea All irreducible representations to $PSL_2(\mathbb{C})$ are faithful and there are exactly two conjugacy classes of discrete representations. Further, V covers only itself. Thus V minimal in \mathcal{M} .

Theorem 1 Only finitely many surgeries on a hyperbolic twist knot (eg. the figure 8 knot) can yield a manifold which is not minimal in the class \mathcal{M} .

Theorem 2 Suppose that *M* is a small hyperbolic 3-manifold with torus boundary such that

- *M* does not strictly dominate any hyperbolic 3-manifold.
- there is a slope α_0 on ∂M such that $M(\alpha_0)$ does not dominate any hyperbolic 3-manifold.

Suppose as well that for any essential surface S_0 in M, either

- (a) $|\partial S_0| \leq 2$, or
- (b) for each norm curve $X_0 \subset X_{PSL_2}(M)$, there is a character $\chi_{\rho} \in X_0$ which restricts to an irreducible character on $\pi_1(S_0)$.

Then there are only finitely many slopes α on ∂M such that the manifold $M(\alpha)$ can strictly dominate a closed hyperbolic 3-manifold.

Examples

- 1) hyperbolic twist knot exteriors.
- 2) 2-bridge knot exteriors $M_{\frac{p}{q}}$ with p prime.
- 3) (-2, 3, n) pretzel knot exterior.
- 4) many pctrd torus bundles (eg. RSS examples).

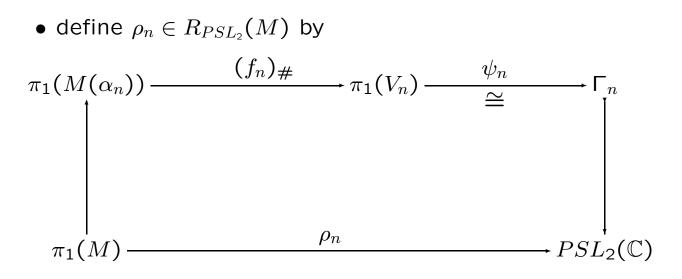
Remark First two conditions are necessary.

Idea of proof

For n > 0, consider non-zero degree maps

 $f_n: M(lpha_n)
ightarrow V_n, V_n$ closed hyperbolic

where $\alpha_n \neq \alpha_m$ for $n \neq m$ and f_n not a htpy equiv



• hypotheses $\Rightarrow \ker(\rho_n | \pi_1(\partial M)) = \langle \alpha_n \rangle$

• set
$$\chi_n = \chi_{\rho_n} \in X_{PSL_2}(M)$$

• characters distinct and $\dim X_{PSL_2}(M) = 1$ so WLOG

$$\chi_n \in X_0 \subset X_{PSL_2}(M)$$

where X_0 is an affine curve.

Two cases to consider:

- (1) $\{\chi_n\}$ subconverges to some $\chi_{\rho_0} \in X_0$
- (2) $\{\chi_n\}$ subconverges to an ideal point of X_0

Case 1. $\{\chi_n\}$ subconverges to some $\chi_{\rho_0} \in X_0$

- WLOG $\lim \rho_n = \rho_0$
- set $\Gamma_n := \rho_n(\pi_1(M))$ $(n \ge 0)$ and note Γ_n torsionfree, cocpct, non-elem, Kleinian for $n \ge 1$
- Jørgensen-Marden \Rightarrow

(a) Γ_0 torsion-free, non-elem, Kleinian

and after passing to a subsequence we may assume that

- (b) $\{\Gamma_n\}$ converges geometrically to torsion-free, non-elem, Kleinian Γ containing Γ_0 .
- (c) $\lim_{n} V_n = V := \mathbb{H}^3 / \Gamma$ (Gromov-Hausdorff)
- (d) \exists homoms $\theta_n : \Gamma \to \Gamma_n$ such that $\rho_n = \theta_n \circ \rho_0$

Note

$$(c) \Rightarrow vol(V) = \lim vol(V_n) \leq \lim vol(M(\alpha_n)) = vol(M)$$

(d) $\Rightarrow \rho_0 | \pi_1(\partial M)$ injective $\Rightarrow V$ has cusps and V_n obtained by Dehn filling V for $n \gg 0$

Can construct map $g: (M, \partial M) \to (V, \partial V)$ realizing ρ_0 and show has non-zero degree. Then WLOG, g a homeomorphism and can show that for infinitely many n, f_n is induced (up to htpy) by g. For such n, $f_n: M(\alpha_n) \xrightarrow{\simeq} V_n$, which contradicts our hypotheses.

Case 2. $\{\chi_n\}$ sbconvrges to an ideal point x_0 of X_0 Let $S_0 \subset M$ be a conn. essential surface associated to x_0 .

- Culler-Shalen theory $\Rightarrow \lim_{n \to \infty} \chi_n | \pi_1(S_0) = \chi_{\rho} \in X_{PSL_2}(S_0)$ where ρ is reducible.
- WLOG $\lim_{n} \rho_n | \pi_1(S_0) = \rho$
- $\rho_n(\pi_1(S_0))$ Kleinian $\Rightarrow \rho_n(\pi_1(S_0))$ elementary $\Rightarrow \rho_n(\pi_1(S_0))$ cyclic, loxodromic

Subcase Condition (a) holds (so $|\partial S_0| \leq 2$)

Show χ_n cannot be bent along S_0 $(n \gg 0)$ so that the restriction of ρ_n to some complementary component of S_0 has cyclic image. Then the condition $|\partial S_0| \leq 2$ implies that ρ_n has cyclic image, which is false.

Subcase Condition (b) holds

Since $\chi_n | \pi_1(S_0)$ reducible for large n, can show that $\chi | \pi_1(S_0)$ reducible for all $\chi \in X_0$. Can also show that X_0 is a norm curve. This contradicts condition (b).

Theorem 3 Suppose that *M* is a small hyperbolic 3-manifold with torus boundary such that

- M does not strictly dominate any Seifert manifold besides $S^1 \times D^2$.
- there is a slope α_0 on ∂M such that $\pi_1(M(\alpha_0))$ does not admit a surjective homomorphism onto a Fuchsian triangle group.
- the image of $\pi_1(\partial M)$ under any surjective homomorphism of $\pi_1(M)$ onto a Fuchsian triangle group is infinite.

and that either

- (a) $H_1(M) \cong \mathbb{Z}$ and Δ_M is not divisible by a cyclotomic polynomial, or
- (b) $H_1(M) \cong \mathbb{Z}$ and $X_{PSL_2}(M(\lambda))$ is finite, or
- (c) each non-trivial curve in $X_{PSL_2}(M)$ is a norm curve

Suppose as well that for any essential surface S_0 in M and any norm curve $X_0 \subset X_{PSL_2}(M)$, there is a character $\chi_{\rho} \in X_0$ which restricts to a strictly irreducible character on $\pi_1(S_0)$. Then there are only finitely many slopes α on ∂M such that the manifold $M(\alpha)$ can strictly dominate an $\widetilde{SL_2}$ manifold.

Example A hyperbolic twist knot exterior M satisfies all the hypotheses. Moreover,

- if M(α) dominates a Haken manifold (eg. any E³, H²×E¹, or Sol manifold) or a reducible manifold (eg. an S²×E¹ manifold), then α a bound slope. This happens for only finitely many slopes.
- a simple homological argument shows that if some filling of M dominates a non-Haken Nilmanifold, then there is a surjective homomorphism $\pi_1(M) \to \Delta(2,3,6)$. But this is readily shown to be impossible. Thus Theorem 1 holds.

Addendum If we remove the condition on representations to Fuchsian triangle groups, we can still conclude that there are proper subgroups $L_1, L_2, \ldots, L_k \subset$ $H_1(\partial M)$, none of which contain α_0 , such that for each slope α in $H_1(\partial M) \setminus (L_1 \cup L_2 \cup \cdots \cup L_k)$, $M(\alpha)$ does not strictly dominate an \widetilde{SL}_2 manifold.

Examples

- 1) 2-bridge knot exteriors $M_{\frac{p}{q}}$ with p prime.
- 2) (-2, 3, n) pretzel knot exterior, $n \neq 0 \pmod{3}$.
- 3) many pctrd torus bundles (eg. RSS examples).