Minimal Hyperbolic

3-Manifolds and Character
 Varieties

Steven Boyer

June 21, 2005

Work joint with Michel Boileau and Shicheng Wang

- 3-mflds: compact, connected, orientable, irred.

Definition

- Say V^{3} dominates W^{3}, written

$$
V \geq W
$$

if there exists a non-zero degree map

$$
f:(V, \partial V) \rightarrow(W, \partial W)
$$

- Say V strictly dominates W if $V \geq W$ but $V \not \approx W$.

Examples

(1) $\partial V \cong S^{1} \times S^{1} \Rightarrow V \geq S^{1} \times D^{2}$
(2) V, W closed and $\pi_{1}(W)$ finite implies $V \geq W$.

Thus " \geq " not a partial order (eg. $S^{3} \geq P^{3} \geq S^{3}$).
If $f: V \geq W$, Gromov's inequality

$$
\|V\| \geq d(f)\|W\|
$$

implies that it is a partial order when restricted to $\{V: V$ has at least one hyperbolic piece $\}$

Definition

V is minimal if $V \nRightarrow W \Rightarrow \begin{cases}\left|\pi_{1}(W)\right|<\infty & \text { if } \partial V=\emptyset \\ W \cong S^{1} \times D^{2} & \text { if } \partial V \cong S^{1} \times S^{1}\end{cases}$

Before we discuss examples, recall that

- The $P S L_{2}(\mathbb{C})$ representation variety of a finitely generated group Γ is the set

$$
R_{P S L_{2}}\left(\ulcorner)=\operatorname{Hom}\left(\left\ulcorner, P S L_{2}(\mathbb{C})\right)\right.\right.
$$

endowed with the compact-open topology. It is a complex, affine algebraic set in a natural way.

- $P S L_{2}(\mathbb{C})$ acts on $R_{P S L_{2}}(\Gamma)$ by conjugation.
- The $P S L_{2}(\mathbb{C})$ character variety of Γ is the set

$$
X_{P S L_{2}}(\Gamma)=R_{P S L_{2}}(\Gamma) / / P S L_{2}(\mathbb{C})
$$

In other words, $\mathbb{C}\left[X_{P S L_{2}}(\Gamma)\right]=\mathbb{C}\left[R_{P S L_{2}}(\Gamma)\right]^{P S L_{2}(\mathbb{C})}$.

- $R_{P S L_{2}}(V)=R_{P S L_{2}}\left(\pi_{1}(V)\right), X_{P S L_{2}}(V)=X_{P S L_{2}}\left(\pi_{1}(V)\right)$
- If V^{3} is small, then

$$
\operatorname{dim}_{\mathbb{C}}\left(X_{P S L_{2}}(V)\right)= \begin{cases}0 & \text { if } \partial V=\emptyset \\ 1 & \text { if } \partial V \cong S^{1} \times S^{1}\end{cases}
$$

Examples

1) $\partial V \cong S^{1} \times S^{1}$
(a) punctured torus bundles whose monodromies are not proper powers.
(b) hyperbolic twist knot exteriors M

Idea There is only one non-trivial curve in $X_{P S L_{2}}(M)$ (Burde) and M covers only itself.
(c) the exterior M of the ($-2,3, n$) pretzel knot is minimal iff $n \not \equiv 0(\bmod 3)$.

Idea There is only one non-trivial curve in $X_{P S L_{2}}(M)$ if $n \not \equiv 0(\bmod 3)$ (Mattman). When $n \equiv 0(\bmod 3)$ there are two, the extra one coming from a strict domination $M \geq T_{2,3}$. Also, M covers only itself.
(d) the exterior of the $\frac{p}{q}$ rational knot is not minimal in general (Ohtsuki-Riley, Sakuma). If $M_{\frac{p}{q}} \geq W$, then $W \cong M_{\frac{p^{\prime}}{q^{\prime}}}$ for some p^{\prime} which divides p. Can use $P S L_{2}(\mathbb{C})$ character variety methods to show that if $M_{\frac{p}{q}} \geq M_{\frac{p^{\prime}}{q^{\prime}}}$, then either $M_{\frac{p}{q}}=M_{\frac{p^{\prime}}{q^{\prime}}}$ or $p>p^{\prime}$. In particular

$$
p \text { prime } \Rightarrow M_{\frac{p}{q}} \text { minimal. }
$$

2) $\partial V=\emptyset$ (Reid-Wang)
(a) $V=M \cup M^{\prime}$ where $M=M^{\prime}$ trefoil exteriors glued together so that $\mu=\phi^{\prime}$ and $\phi=\mu^{\prime}$.

Idea All representations to $P S L_{2}(\mathbb{C})$ have finite cyclic image. Thus V is minimal in \mathcal{M} where
$\mathcal{M}=\{V: V$ Haken or admits a geometric structure $\}$
(b) $V=M\left(\frac{1}{2}\right)$ where M is the exterior of the figure 8 knot.

Idea All irreducible representations to $P S L_{2}(\mathbb{C})$ are faithful and there are exactly two conjugacy classes of discrete representations. Further, V covers only itself. Thus V minimal in \mathcal{M}.

Theorem 1 Only finitely many surgeries on a hyperbolic twist knot (eg. the figure 8 knot) can yield a manifold which is not minimal in the class \mathcal{M}.

Theorem 2 Suppose that M is a small hyperbolic 3-manifold with torus boundary such that

- M does not strictly dominate any hyperbolic 3-manifold.
- there is a slope α_{0} on ∂M such that $M\left(\alpha_{0}\right)$ does not dominate any hyperbolic 3-manifold.
Suppose as well that for any essential surface S_{0} in M, either
(a) $\left|\partial S_{0}\right| \leq 2$, or
(b) for each norm curve $X_{0} \subset X_{P S L_{2}}(M)$, there is a character $\chi_{\rho} \in X_{0}$ which restricts to an irreducible character on $\pi_{1}\left(S_{0}\right)$.
Then there are only finitely many slopes α on ∂M such that the manifold $M(\alpha)$ can strictly dominate a closed hyperbolic 3-manifold.

Examples

1) hyperbolic twist knot exteriors.
2) 2-bridge knot exteriors $M_{\frac{p}{q}}$ with p prime.
3) ($-2,3, n$) pretzel knot exterior.
4) many pctrd torus bundles (eg. RSS examples).

Remark First two conditions are necessary.

Idea of proof

For $n>0$, consider non-zero degree maps
$f_{n}: M\left(\alpha_{n}\right) \rightarrow V_{n}, V_{n}$ closed hyperbolic
where $\alpha_{n} \neq \alpha_{m}$ for $n \neq m$ and f_{n} not a htpy equiv

- define $\rho_{n} \in R_{P S L_{2}}(M)$ by

- hypotheses $\Rightarrow \operatorname{ker}\left(\rho_{n} \mid \pi_{1}(\partial M)\right)=\left\langle\alpha_{n}\right\rangle$
- set $\chi_{n}=\chi_{\rho_{n}} \in X_{P S L_{2}}(M)$
- characters distinct and $\operatorname{dim} X_{P S L_{2}}(M)=1$ so WLOG

$$
\chi_{n} \in X_{0} \subset X_{P S L_{2}}(M)
$$

where X_{0} is an affine curve.

Two cases to consider:
(1) $\left\{\chi_{n}\right\}$ subconverges to some $\chi_{\rho_{0}} \in X_{0}$
(2) $\left\{\chi_{n}\right\}$ subconverges to an ideal point of X_{0}

Case 1. $\left\{\chi_{n}\right\}$ subconverges to some $\chi_{\rho_{0}} \in X_{0}$

- WLOG $\lim \rho_{n}=\rho_{0}$
- set $\Gamma_{n}:=\rho_{n}\left(\pi_{1}(M)\right)(n \geq 0)$ and note Γ_{n} torsionfree, cocpct, non-elem, Kleinian for $n \geq 1$
- Jørgensen-Marden \Rightarrow
(a) Γ_{0} torsion-free, non-elem, Kleinian and after passing to a subsequence we may assume that
(b) $\left\{\Gamma_{n}\right\}$ converges geometrically to torsion-free, non-elem, Kleinian Γ containing Γ_{0}.
(c) $\lim _{n} V_{n}=V:=\mathbb{H}^{3} / \Gamma$ (Gromov-Hausdorff)
(d) \exists homoms $\theta_{n}: \Gamma \rightarrow \Gamma_{n}$ such that $\rho_{n}=\theta_{n} \circ \rho_{0}$

Note
(c) $\Rightarrow \operatorname{vol}(V)=\lim \operatorname{vol}\left(V_{n}\right) \leq \lim \operatorname{vol}\left(M\left(\alpha_{n}\right)\right)=\operatorname{vol}(M)$
(d) $\Rightarrow \rho_{0} \mid \pi_{1}(\partial M)$ injective $\Rightarrow V$ has cusps and V_{n} obtained by Dehn filling V for $n \gg 0$

Can construct map $g:(M, \partial M) \rightarrow(V, \partial V)$ realizing ρ_{0} and show has non-zero degree. Then WLOG, g a homeomorphism and can show that for infinitely many n, f_{n} is induced (up to htpy) by g. For such n, $f_{n}: M\left(\alpha_{n}\right) \xrightarrow{\simeq} V_{n}$, which contradicts our hypotheses.

Case 2. $\left\{\chi_{n}\right\}$ sbconvrges to an ideal point x_{0} of X_{0} Let $S_{0} \subset M$ be a conn. essential surface associated to x_{0}.

- Culler-Shalen theory $\Rightarrow \lim _{n} \chi_{n} \mid \pi_{1}\left(S_{0}\right)=\chi_{\rho} \in X_{P S L_{2}}\left(S_{0}\right)$ where ρ is reducible.
- WLOG $\lim _{n} \rho_{n} \mid \pi_{1}\left(S_{0}\right)=\rho$
- $\rho_{n}\left(\pi_{1}\left(S_{0}\right)\right)$ Kleinian $\Rightarrow \rho_{n}\left(\pi_{1}\left(S_{0}\right)\right)$ elementary

$$
\Rightarrow \rho_{n}\left(\pi_{1}\left(S_{0}\right)\right) \text { cyclic, Ioxodromic }
$$

Subcase Condition (a) holds (so $\left|\partial S_{0}\right| \leq 2$)
Show χ_{n} cannot be bent along $S_{0}(n \gg 0)$ so that the restriction of ρ_{n} to some complementary component of S_{0} has cyclic image. Then the condition $\left|\partial S_{0}\right| \leq 2$ implies that ρ_{n} has cyclic image, which is false.

Subcase Condition (b) holds

Since $\chi_{n} \mid \pi_{1}\left(S_{0}\right)$ reducible for large n, can show that $\chi \mid \pi_{1}\left(S_{0}\right)$ reducible for all $\chi \in X_{0}$. Can also show that X_{0} is a norm curve. This contradicts condition (b).

Theorem 3 Suppose that M is a small hyperbolic 3-manifold with torus boundary such that

- M does not strictly dominate any Seifert manifold besides $S^{1} \times D^{2}$.
- there is a slope α_{0} on ∂M such that $\pi_{1}\left(M\left(\alpha_{0}\right)\right)$ does not admit a surjective homomorphism onto a Fuchsian triangle group.
- the image of $\pi_{1}(\partial M)$ under any surjective homomorphism of $\pi_{1}(M)$ onto a Fuchsian triangle group is infinite.
and that either
(a) $H_{1}(M) \cong \mathbb{Z}$ and Δ_{M} is not divisible by a cyclotomic polynomial, or
(b) $H_{1}(M) \cong \mathbb{Z}$ and $X_{P S L_{2}}(M(\lambda))$ is finite, or
(c) each non-trivial curve in $X_{P S L_{2}}(M)$ is a norm curve
Suppose as well that for any essential surface S_{0} in M and any norm curve $X_{0} \subset X_{P S L_{2}}(M)$, there is a character $\chi_{\rho} \in X_{0}$ which restricts to a strictly irreducible character on $\pi_{1}\left(S_{0}\right)$. Then there are only finitely many slopes α on ∂M such that the manifold $M(\alpha)$ can strictly dominate an $\widetilde{S L_{2}}$ manifold.

Example A hyperbolic twist knot exterior M satisfies all the hypotheses. Moreover,

- if $M(\alpha)$ dominates a Haken manifold (eg. any $\mathbb{E}^{3}, \mathbb{H}^{2} \times \mathbb{E}^{1}$, or Sol manifold) or a reducible manifold (eg. an $S^{2} \times \mathbb{E}^{1}$ manifold), then α a bound slope. This happens for only finitely many slopes.
- a simple homological argument shows that if some filling of M dominates a non-Haken Nil manifold, then there is a surjective homomorphism $\pi_{1}(M) \rightarrow \Delta(2,3,6)$. But this is readily shown to be impossible. Thus Theorem 1 holds.

Addendum If we remove the condition on representations to Fuchsian triangle groups, we can still conclude that there are proper subgroups $L_{1}, L_{2}, \ldots, L_{k} \subset$ $H_{1}(\partial M)$, none of which contain α_{0}, such that for each slope α in $H_{1}(\partial M) \backslash\left(L_{1} \cup L_{2} \cup \cdots \cup L_{k}\right), M(\alpha)$ does not strictly dominate an $\widetilde{S L_{2}}$ manifold.

Examples

1) 2-bridge knot exteriors $M_{\frac{p}{q}}$ with p prime.
2) ($-2,3, n$) pretzel knot exterior, $n \not \equiv 0(\bmod 3)$.
3) many pctrd torus bundles (eg. RSS examples).
