Wild branching surfaces and topological 4-manifolds

Riccardo Piergallini

Università di Camerino

The starting point

For any closed orientable smooth 4-manifold M there is a simple branched covering $M \to S^4$

$$M = M(F, \omega)$$
, with $F \subset S^4$ and $\omega : \pi_1(S^4 - F) \to \Sigma_d$

*
$$\begin{cases} d = 4 & F = \text{smooth surface with nodes (P. 1995)} \\ d = 5 & F = \text{smooth surface (Iori-P. 2002)} \end{cases}$$

Handles and ribbons

Bobtcheva-P. 2004

Any closed orientable 3-manifold is a boundary simple cover of S^3

Moves and singularities

Removing the singularities

4-dimensional 2-cobordisms

Representing $W^4 = M_0^3 \times [0,1] \cup H_{i's}^1 \cup H_{j's}^2$ (M_0 connected) as simple covering of $S_{[1/2,1]}^3 = B^4 - \operatorname{Int} B_{1/2}^4$ branched over F

Bounded 4-manifolds

For any compact connected orientable smooth 4-manifold M with k boundary components there is a simple branched covering $M \to S^4 - \bigcup_{i=1}^k \operatorname{Int} B_i^4$ satisfying the property *

Open 4-manifolds

For any open connected orientable 4-manifold M there is a simple branched covering $M \to S^4 - X$ with the property *, where $X \subset S^4$ is homeomorphic $\operatorname{End} M$

Any $R_{
m exotic}^4$ is a simple branched cover of $R_{
m standard}^4$

Topological 4-manifolds

For any closed orientable topological 4-manifold M there is a simple branched covering $M\to S^4$ satisfying the property * with a possibly wild branching surface F

$$p: M - \{ \mathrm{pt} \} \to R^4$$
 $\widehat{p}: M \to S^4$ simple covering $\sim \sim$ simple covering branched over $F \subset R^4$ branched over $\widehat{F} \subset S^4$

 \widehat{F} has one wild point (if M is not smooth)

Can we choose \widehat{F} to be a topological surface and limit the wildness to the inclusion $\widehat{F} \subset S^4$?

2-handle

kinky handle

