



Part 0. Terminology
All 3-manifolds are compact, connected, and

oriented, all knots are in S, all maps are

proper, and all surfaces are embedded.

r-A surface in a 3-manifold is incompressible
if the inclusion induces an injective map on

7ri; A 3-manifold M is: irreducible if every
embedded 2-sphere in M bounds a ball M;
5-irreducible if every proper disc in M sepa-
rates a ball from M; atocroidal if every Z Z

subgroup in ir1M is conjugate into r15M, is
a Seifert manifold, if it is finitely covered by
a circle bundle over a surface.j
A closed orientable 3-manifold is called geo-

metric if it admits one of the following geome-
tries: H3 (hyperbolic), PSL2JR), H2 x
Sol, Nil, E3 (Euclidean), 82 x El, S3 (spher-

1






ical).

The JSJ-decomposition of a irreducible 3-
manifold M is the canonical splitting of M

along a finite (possibly empty) collection T of

disjoint and non-parallel, incompressible, tori
into maximal Seifert fibered or atoroidal com-

pact sub-manifolds. We call the components
of M \ T the JSJ-pieces of M.

Thurston's geometrization conjecture claims
that each JSJ-piece of any closed, irreducible
3-manifold is geometric. A compact irreducible
3-manifold is called geometrizable if it verifies
Thurston's geometrization conjecture.

Say a 3-manifoldM dominates (1-dominates)
a 3-manifold N if there is a non-zero degree
(degree one) proper map f : M - N.
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Let k1 and k2 be two knot. Say k1 ˆ k2,
or equivalently say that k1 1-dominates k2, if
E(k1) 1-dominates E(k2), where E(k) is the
knot exterior of k. If k1 k2 but k1 k2,
we often write k1 > k2. Then

(1) k ˆ 0 for each knots.

(2) The relation ˆ on knots is a partial order.

Say a knot is small if each incompressible
surfaces in E(k) is boundary parallel.

3






Part M. On finiteness on domina-
tion of 3-manifolds

Boileau-Rubiristein- Wang
With Thurston's conjectural picture of 3-

manifolds, the following simple and natural

question was raised in the 1980's (and for-

mally appeared in the 1990's, see [Ki, 3.100

(Y.Rong)]).

Question 1. Does every closed orientable

3-manifold 1-dominates at most finitely many
closed geornetrizable 3-manifolds.
If we allow any degree, 3-manifolds support-

ing one of the geometries S3, PSL2(R), Nil
can dominate infinitely many 3-manifolds. The

following generalization of Question 1 makes
sense:
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Question 2. Let M be a closed 3-manifold
Does M dominate at most finitely many
closed geometrizable 3-manifolds N not sup-
porting the geometries of S3, PSL2(R) , Nil

In this setting, known results are

Theorem 0. [Soma, Porti-Reznikov, Zhou-

W, Hayat-Zieschang-W]

(1) Any closed 3-manifold 1-dominates at
most finitely many geometric 3-manifolds.

(2) A compact .3-manifold dominates at
most finitely many geometric 3-manifolds
supporting geometries of either H3 or ]H[2 x

E1.

By Theorem 0, positive answer to Question
2 implies positive answer to Question 1, and

Question 2 reduces to the following:
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Question 3 Let M be a closed 3-manifold.
Does M dominate at most finitely many,
closed, irreducible 3-manifolds N with non-
trivial JSJ decomposition?

Question 3 is divided into 2 steps:

1. Finiteness of JSJ-pieces: show that there
is a finite set WS(M) of compact orientable
3-manifolds such that each JSJ-piece of a
3-manifold N dominated by M belongs to
WS(M).

2. Finiteness of gluing: For a given finite set
WS(M) of Seifert manifolds and of com-

plete hyperbolic 3-manifolds with finite vol-
ume, there are only finitely many ways of

gluing elements in '7-18(M) to get closed
3-manifolds dominated by M.
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Remark. (1) Derbez Show that every graph
manifold 1-dominates at most finitely many

geometrizable 3-manifolds.

	

aj"_c VA
I T-V	

k	 +r
JLBy degree one map produced by null-

homotopy surgery (Boileau-W), we may as- /

sume that M is irreducible in the questions.

Soma proved the finiteness of hyperbolic JSJ-

pieces. Now we complete the first Step:

Theorem 1. [Finiteness of JSJ pieces]
Let M be a closed, orientable, 3-manifold.
Then there is a finite set '1-18(M) of com-

pact 3-manifolds, such that the JSJ-pieces
of any geometrizable 3-manifold N dom-
inated by M belong to '1-18(M), provided
that N is not supporting the geometries of
s3, PSL2(R),Nil.
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Theorem 1 is derived from a finiteness result
for the Thurston norm.

Let X be a compact, orientable 3-manifold
and Y C OX be a subsurface.

For an oriented surface (F, OF) -+ (X, Y).
Set _(F) = max{O, -(F)} if F is con-
nected, otherwise let x-(F) = EX-(Fi))
where Fj are the components of F.
Then for z e H2(X, Y; Z) the Thurston
norm I zH of z is defined as minimum ofx- (F),
where F runs over all surfaces representing z
in H2(X, Y; Z).
Then extends it to H2(X, Y; I).
Definition. For a finite set of elements

OZ ={a1,...,ak} Of H2(X,Y;Z) define
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TN(o) = max{MajM,i = 1,...,k}.

Then define TN(X, Y), Thurston norm of
the pair (X, Y), to be the minimum ofTN(ci),
where c runs over all finite generating set

of H2(X, Y; Z)}.
Theorem 2. [Finiteness of the Thurston

norm]Let M be an irreducible, closed, on-
entable 3-manifold. Then TN(M8, 3Mg)
picks only finitely, many values when S runs
over all closed, incompressible surfaces em-
bedded in M.
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Theorem 2 is derived from the finiteness of
a version of "patterned guts".
In 3-manifold topology, the term"guts" has

several different interpretations. However, finite-
ness of guts is a basic principle, which orig-
inated from Kneser's work. For some recent

applications related to guts in 3-manifold the-

ory, see [A], [Ga2], [JR]. We now discuss the

precise definition of patterned guts needed for
our study of non-zero degree maps.

Suppose X is a 3-irreducible and irreducible,

compact, orientable 3-manifold. According
to Jaco-Shalen-Johannson theory, there is a

unique decomposition, up to proper isotopy:

X = (X \ Seifert pairs) U Seifert pairs.
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Furthermore the Seifert pairs have unique
decompositions, up to proper isotopy:

Seifert pairs = (Seifert pairs \ IB.) U IB,

where IB is formed by the components of
the Seifert pairs which are I-bundles over sur-
faces F with negative Euler characteristic (F).
Hence we have a decomposition

X = (X \IB) UAxIB = GxUAxIB,
where Ax is the collection of frontier annuli
of IB in X. We call Gx = X \ 1B the

guts of X, and the decomposition above the
CI- decomposition for X.

Suppose S is a closed, incompressible sur-
face in an irreducible 3-manifold M. For such
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a surface 8, we write the GI decomposition
of M8 as

= G UA8 IBS.
Definition. Suppose X is a 3-manifold. A

3-pattern for X is a finite collection of disjoint
annuli A C 0X, and given A we say that X
is 3-patterned.
Theorem 3. Let M be a closed, on-

entable, irreducible 3-manifold. Then there
is a finite set 9(M) of connected, compact,
onientable, 3-patterned 3-manifolds such that

for each closed, incompressible (not neces-

sarily connected) surface S C M, all pat-
terned guts components of (G8, G fl A8)
belong to 9(M).
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We also prove the finiteness of gluing when
the targets are integral homology 3-spheres.
Theorem 4. Any closed orientable 3-

manifold dominates only finitely many ge-
ometrizable integral homology 3-spheres.
By Haken's finiteness theorem, there is a

maximum number h(M) of pairwise disjoint,
non-parallel, closed, connected, incompress-
ible surfaces embedded in M.

Lemma 1. Let M and N be two closed,
irreducible and orieri,table 3-manifolds. If
M dominates N, then h(M) ˆ h(N).
The dual graph F(N) to the JSJ-decomposition

of an irreducible homology sphere N is a tree.

By Lemma 1, the number of edges of F(N) is
<h(M), the Haken number of M.
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Lemma 2. Only finitely many Seifert fibered

integral homology 3-spheres are dominated M.
For a given graph F, let D(M, F) be the set

of geometrizable closed integer homology 3-

spheres N such that:

1. N is dominated by M.
2. The JSJ-graph r(N) is isomorphic to F.

3. Each vertex manifold has a fixed topologi-
cal type.

The Finiteness of JSJ pieces, and Lemmas

1,2 reduce the proof of Theorem 4 to the fol-

lowing proposition:

Prop 1. The set V(M, F) is finite.
The proof of Proposition 1 is by induction

on the number F of edges of F. If nF =
0, Proposition 1 is true by Theorem 0. We
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assume the result to be true for F < n - 1
and prove it for riF =

Let N E V(M,F). Let w be a leaf of F
and let e be the attached edge. Denote by W
the geometric submanifold in 7-18(M) corre-
sponding to w and let V = H\W. The com-
pact 3-manifolds V and W are both integral
homology solid tori with boundary an incom-
pressible torus corresponding to the edge e.
Notice that the topological type of W is fixed
by definition of D(M, F), while the topologi-
cal type of V may depend on N.

Since V and W are integral homology
solid tori, one can fix on each torus DV
and 3W a basis for the first homology group:
{iv ,X} and {/w, 'w} such that:

11	 11

15






1. /'v C DV and /'w C 5W each bounds
a properly embedded surface Fv and F
respectively in V and W.

2. Intersection /-'v 'v = Iw Aw = 1

Lemma 3. The gluing map 0 : DV -+
SW satisfies the following equations, where

E=±1,p,qEZ:

(1) O(pV) = Pbw + ¬A,

(2) O(AV) = E(pq + l)i'w + qw"
By pinching V to a solid torus to gets a

degree-one map fV : N - W(p/), where
the homology sphere W(p/E) is obtained by
Dehn filling W with a solid torus. Hence

W(p/E) is dominated by M and we can show
The integer p takes only finitely many
values.
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By pinching W to a solid torus, one gets a

degree-one map fW : N -+ V(-q/6). Hence

V(-q/c) is dominated by M and we can show
The manifold V = M \ int(W) takes

only finitely many topological types
and the integer q takes only finitely
many values.

The argument for integral homology spheres
can be modified to prove the following

Corollary 1. Any compact orientable 3-
manifold dominates at most finitely many knot

complements in S3.

Let E(k) be the exterior of a knot k in S.
The dual graph F(k) to the JSJ-decomposition
of E(k) is a rooted tree, where the root cor-

responds to the unique vertex manifold con-

taining DE(k).
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Let w be a leaf of F which is not the root.
Recall that S = E(k)uN(k). Let W be the

JSJ-piece of E(k) corresponding to w and let
V = 3

\ int(W). Then V is a solid torus
such that V \ int(N(k)) = E(k) \ irit(W),
which we will denote by U. Then we have
E(k) = UU W, where q: DV - 0W is the

gluing map.
In the proof of Theorem 4, we proved the

finiteness of both integers p and q by pinching
first V, then W. In the case of a knot com-

plement E(k) we can only pinch W. However
in this case, only one integer is involved in de-

termining the gluing due to the fact that W
is the exterior of a non-trivial knot kW in 3

which is determined by its exterior [GL].

8
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Conjecture [Ki, Problem 1.12 (J. Simon)]
Given a knot k C §3, there are only finitely
many knots k e 3 for which there is an

epimorphism /j : ir1(E(k)) - 7rl(E(k)).
The Conjecture is true if k is small and each

epimorphism Oi is 0-preserving [Reid-W].

Corollary 1 gives another answer to Simon's

Conjecture.

Corollary 2. There are only finitely many
knots k c § for which there is an epimor-
phism	 r1(E(k)) - r1(E(k)) such that
the image	 of the longitude is non-trivial.
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Part K. 1-domination on knots

Boilaeu-Boyer-Rolfsen- Wang - acgnj,-
Letg(k), A(k), 'k V(k) bethegenus, Alexan-

der module, Alexander polynomial, and Gro-
mov volume of k respectively.

If k > k2, then

(1) g(k1) ˆ g(k2) (Cabai);

(2) V(k1) > V(k2) (Gromov);

(3) Ak1 = Ak2 A, in particular k2k1;

20






Alexander polynomial is easy to calculate
and (3) above already gives some interesting
applications.

Example 1.

(1) Figure 1 is a band connected sum k of
the trefoil knot 31 and the trivial knot with

Ak(t) = 1-t2+t4, which contains no A31 (t) =
1- t+P as a factor. It follows that band con-
nected sum does not 1-dominates its factors
in general.

21






(2) Figure 2 is a Murasugi sum k of 52 and
4 with k(t) = 2 - 3t + 3t2 - 3t3 + 2t4,
which contain no either &1(t) = 1 - 3t + t2
Or A52 (t) = 2- 3t + 2t2 as a factor. It follows
that Murasugi sum does not 1-dominates its
factors in general.

41

52
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Corollary 1. (1) Any non-fiber knot with

k(t) leading coefficient 1 does not 1-
dominate any fiber knots of the same genus.
(2) Suppose k1 and k2 of the same genus,

k1 is an alternating knot and k2 is a fiber
knot. Then k1 k2 implies k1 = k2.

Rigidity results about 1-dominations on knots
is " k ˆ k' implies that k = k', if
Some previous rigidity results are: k ˆ k'

implies that k =

(1) if k and k' have the same Gromov volume
and k is hyperbolic [Gromov-Thurston]; or

(2) if k and k' have the same Alexander poly-
nomial and k is fibred; or

(3) if k and k' have the same genus and k is
Seifert [Rong].
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Example 2. Non-trivial 1-dominations k -+
k1 of the same genus, the same Alexander

polynomial, and the same Gromov volume.
Moreover all those invariants are non-vanishing.

V N (k2

longitude

Let k = h(ki) be a satellite of k2 indicated

by Figure below. Then we have 1-domination
k -+ k1 given by dis-satellization.

The JSJ-piece of E(k) consists of three com-
ponents: two Seifert pieces and one hyper-
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bolic piece H, which is homeomorphic to the

Hopf link complement; and the JSJ-piece of

E(k1) consists of two components: one Seifert

piece and one hyperbolic piece H. It become
clear that both k and k1 are of genus 1, and
have the same Gromov volume which equal to
the hyperbolic volume of the Hopf link com-

plement. They also have the same Alexander

polynomials, since the h is longitude preserv-
ing.
There are arbitrary long 1-domination se-

quences of knots with the genus, Alexander

polynomials and Gromov volumes are all same.
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In Example 2, the fact that the winding
number of k with k2 is zero is essential in order
to construct non-trivial 1-domination k > k1
with many invariants the same.

Indeed we have the following rigidity result.

Theorem. Suppose that any companion
of k has non-zero winding number. If k ˆ
k' with the same Gromov volume and the
same genus, then k = k'.
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Closely related rigidity results, we will study
the bound of the length n of 1-domination

sequences of knots k0 > k > k2 > .... > k
with given k0.
Theorem. [Rong, Soma] Any 1-domination

sequence M0 > M > ".. > M >
of 3-manifolds in Thurston's picture has a
bounded length for given M0.
Definition.

(1) Say a Seifert surface S of a knot k is free
if E(k) \ S is a handlebody. Say a knot /c is

free, if all its incompressible Seifert surfaces
are free.

(2) Define (k) be the maximum g(S) for all

incompressible Seifert surfaces S of k.
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(1) There are examples of i(k) = 00,

(2) (k) = g(k) for fiber knots and 2-bridge
knots (Hatcher-Thurston).

(3) (k) is bounded for alternating knots

(Menasco-Thistlethwaite) and for small knots

(Lackenby).

(4) alternating knots (Menasco), Montesinos

knots (Oertel) Small knots, fiber knots are
free knots;

(5) If a knot k has a companion of winding
number zero, then k is not free.

Proposition. Suppose k0 is a free knot
with bounded .z(ko). Then any 1-domination

sequence k0 > k1 > .... > k of knots has
n < g(ko).
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Proof. The core of the proof is the follow-

ing simple fact.

Let k be a free knot, f: E(k) -f E(k') be
a degree one map, and 8' be a Seifert surface
of k' with genus g(k'). By classical argument
in 3-manifold topology, f can be properly ho-

motoped so that S = f 1(S') is a connected

incompressible Seifert surface of k.
Then f induces a proper degree one

f* : H=E(k)\S-E(k')\S'=H'
Since k is free, H is a handlebody, then H' is
a handlebody.
One can easy to argue that if g(S) = g(S'),

then k = k'.

//
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