Part 0. Terminology

All 3-manifolds are compact, connected, and
oriented, all knots are in 83, all maps are
proper, and all surfaces are embedded.

r'A surface in a 3-manifold is incompressible
if the inclusion induces an injective map on
m1; A 3-manifold M is: wrreducible if every
embedded 2-sphere in M bounds a ball M;
0-irreducible if every proper disc in M sepa-
rates a ball from M; atoroidal if every Z & Z
subgroup in w1 M is conjugate into m{OM, is
a Seifert manifold, if it is finitely covered by
a circle bundle over a surfaﬁ/

A closed orientable 3-manifold is called geo-
metric if it admits one of the following geome-

e

tries: H3 (hyperbolic), PSLy(R), H? x El,
Sol, Nil, E3 (Euclidean), S? x E1, $3 (spher-
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ical).

The JSJ-decomposition of a irreducible 3-
manifold M is the canonical splitting of M
along a finite (possibly empty) collection T of
disjoint and non-parallel, incompressible, tori
into maximal Seifert fibered or atoroidal com-

pact sub-manifolds. We call the components
of M \ T the JSJ-pieces of M.

Thurston’s geometrization conjecture claims
that each JSJ-piece of any closed, irreducible
3-manifold is geométric. A compact irreducible
3-manifold is called geometrizable if it verifies
Thurston’s geometrization conjecture.

Say a 3-manifold M dominates (1-dominates)
a 3-manifold V if there is a non-zero degree
(degree one) proper map f : M — N.



Let k1 and k9 be two knot. Say k; > ko,
or equivalently say that k; 1-dominates ko, if
E(k1) 1-dominates E(ks), where E(k;) is the
knot exterior of k;. If ky > ko but ky # ko,
we often write k; > k9. Then
(1) k > O for each knots.

(2) The relation > on knots is a partial order.

Say a knot is small if each incompressible
surfaces in F/(k) is boundary parallel.



Part M. On finiteness on domina-
tion of 3-manifolds

Boileau-Rubinstein- Wang

With Thurston’s conjectural picture of 3-
manifolds, the following simple and natural
question was raised in the 1980’s (and for-
mally appeared in the 1990’s, see [Ki, 3.100
(Y.Rong)]).

Question 1. Does every closed orientable
3-manifold 1-dominates at most finitely many
closed geometrizable 3-manifolds.

If we allow any degree, 3-manifolds support-
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ing one of the geometries S°, PSLy(R), Nil
can dominate infinitely many 3-manifolds. The
following generalization of Question 1 makes
sense:



Question 2. Let M be a closed 3-manifold.
Does M dominate at most finitely many
closed geometrizable 3-manifolds N not sup-

e

porting the geometries of S°, PSLa(R), Nil.?
In this setting, known results are

Theorem 0. [Soma, Porti-Reznikov, Zhou-
W, Hayat-Zieschang-W]

(1) Any closed 3-manifold 1-dominates at
most finitely many geometric 3-manifolds.

(2) A compact 3-manifold dominates at
most finitely many geometric 3-manifolds
supporting geometries of either H 3 or HE x
E!.

By Theorem 0, positive answer to Question
2 implies positive answer to Question 1, and
Question 2 reduces to the following:



Question 3 Let M be a closed 3-manifold.
Does M dominate at most finitely many,
closed, irreducible 3-manifolds N with non-
trivial JSJ decomposition?

Question 3 is divided into 2 steps:

1. Finiteness of JSJ-pieces: show that there
is a finite set HS (M) of compact orientable
3-manifolds such that each JSJ-piece of a
3-manifold NV dominated by M belongs to
HS(M).

2. Finiteness of gluing: For a given finite set
HS(M) of Seifert manifolds and of com-
plete hyperbolic 3-manifolds with finite vol-
ume, there are only finitely many ways of
gluing elements in HS(M) to get closed
3-manifolds dominated by M.



Remark. (1) Derbez Show that every graph
manifold 1-dominates at most finitely many
geometrizable 3-manifolds. i ”L&%ﬁ o

g ) By degree one map produced by null-,dn
N.
homotopy surgery (Boileau-W), we may as- "

sume that M is irreducible in the questions.

Soma, proved the finiteness of hyperbolic JSJ-
pieces. Now we complete the first Step:

Theorem 1. [Finiteness of JSJ pieces]
Let M be a closed, orientable, 3-manifold.
Then there is a finite set HS(M) of com-
pact 3-manifolds, such that the JSJ-pieces
of any geometrizable 3-manifold N dom-
inated by M belong to HS(M), provided

that N 1is not supporting the geometries of
S?, PSLy(R), Nil.




Theorem 1 is derived from a finiteness result
for the Thurston norm.

Let X be a compact, orientable 3-manifold
and Y C 0X be a subsurface.

For an oriented surface (F,0F) — (X,Y).
Set x—(F) = max{0,—x(F)} if F is con-
nected, otherwise let x_(F) = > x—(F;),
where Fj are the components of F'.

Then for z € Hy(X,Y;Z) the Thurston
norm || z|| of z is defined as minimum of y — (F')
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where F' runs over all surfaces representing z
in Hy(X,Y; Z).
Then extends it to Ho(X,Y; R).

Definition. For a finite set of elements
a={ay,...,a;} of Hy(X,Y:Z) define



TN(a) = mazf{||a;||,7 =1, ..., k}.

Then define TN (X,Y), Thurston norm of
the pair (X,Y), to be the minimum of TN (a),
where o runs over all finite generating set
of Hy(X,Y;Z)}.

Theorem 2. [Finiteness of the Thurston
norm|Let M be an irreducible, closed, ori-
entable 3-manifold. Then TN(Mg,OMg)

picks only finitely many values when S runs

over all closed, incompressible surfaces em-
bedded mn M.



Theorem 2 is derived from the finiteness of
a version of " patterned guts”.

In 3-manifold topology, the term ”guts” has
several different interpretations. However, finite-
ness of guts is a basic principle, which orig-
inated from Kneser’s work. For some recent
applications related to guts in 3-manifold the-
ory, see [A], [Ga2], [JR]. We now discuss the
precise definition of patterned guts needed for
our study of non-zero degree maps.

Suppose X is a d-irreducible and irreducible,
compact, orientable 3-manifold. According
to Jaco-Shalen-Johannson theory, there is a
unique decomposition, up to proper isotopy:

X = (X \ Seifert pairs) U Seifert pairs.
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Furthermore the Seifert pairs have unique
decompositions, up to proper isotopy:

Seifert pairs = (Seifert pairs \ /B ) U I By,

where /By is formed by the components of
the Seifert pairs which are I-bundles over sur-
faces F' with negative Euler characteristic x(F).
Hence we have a decomposition

X = (X\IBy)Ua, IBy = Gx Uy, IBy,

where A x is the collection of frontier annuli
of IBy, in X. Wecall Gx = X \ IB™ the
guts of X, and the decomposition above the
GI- decomposition for X.

Suppose S is a closed, incompressible sur-
face in an irreducible 3-manifold M. For such
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a surface S, we write the GI decomposition
of Mg as

Mg = Gg UAS fBg.

Definition. Suppose X is a 3-manifold. A
O-pattern for X is a finite collection of disjoint
annuli A C 0X, and given A we say that X
is O-patterned.

Theorem 3. Let M be a closed, ori-
entable, irreducible 3-manifold. Then there
is a finite set G(M) of connected, compact,
orientable, O-patterned 3-manifolds such that
for each closed, incompressible (not neces-
sarily connected) surface S C M, all pat-

terned guts components of (Gg,GgN Ag)
belong to G(M).
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We also prove the finiteness of gluing when
the targets are integral homology 3-spheres.

Theorem 4. Any closed orientable 3-
manifold dominates only finitely many ge-
ometrizable integral homology 3-spheres.

By Haken’s finiteness theorem, there is a
maximum number A(M) of pairwise disjoint,

non-parallel, closed, connected, incompress-
ible surfaces embedded in M.

Lemma 1. Let M and N be two closed,

irreductble and orientable 3-mansifolds. If
M dominates N, then h(M) > h(N).

The dual graph I'(/V) to the JSJ-decomposition
of an irreducible homology sphere N is a tree.

By Lemma 1, the number of edges of I'(IV) is
< h(M), the Haken number of M.
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Lemma 2. Only finitely many Seifert fibered
integral homology 3-spheres are dominated M .

For a given graph I, let D(M,I") be the set
of geometrizable closed integer homology 3-
spheres IV such that:

1. N is dominated by M.
2. The JSJ-graph I'(IV) is isomorphic to I'.

3. Each vertex manifold has a fixed topologi-
cal type.

The Finiteness of JSJ pieces, and Lemmas
1,2 reduce the proof of Theorem 4 to the fol-
lowing proposition:

Prop 1. The set D(M,T) is finite.

The proot of Proposition 1 is by induction

on the number nr of edges of I'. If np =
0, Proposition 1 is true by Theorem 0. We
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assume the result to be true for np < n —1
and prove it for np = n.

Let N € D(M,T). Let w be a leaf of T'
and let e be the attached edge. Denote by W
the geometric submanifold in HS(M) corre-
sponding to w and let V' = M \W. The com-
pact 3-manifolds V' and W are both integral
homology solid tori with boundary an incom-
pressible torus corresponding to the edge e.
Notice that the topological type of W is fixed
by definition of D(M,T'), while the topologi-
cal type of V' may depend on V.

Since V' and W are integral homology
solid tori, one can fix on each torus OV
and OW a basis for the first homology group:

{py, A\v} and { s, Ay} such that:
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1. uy € OV and pyy C OW each bounds
a properly embedded surface Fy and Fyy
respectively in V' and W.

2. Intersection py - Ay = uw - A =1

Lemma 3. The gluing map ¢ : OV —
OW satisfies the following equations, where
e==1, p,q € ZL:

(1) $(pv) = ppw + eAw,
(2) d(Av) = e(pg + Duw + gAw .

By pinching V' to a solid torus to gets a
degree-one map fiy : N — W (p/e), where
the homology sphere W(p/e) is obtained by
Dehn filling W with a solid torus. Hence
W (p/e) is dominated by M and we can show
The integer p takes only finitely many
values.

16



By pinching W to a solid torus, one gets a
degree-one map fyr : N — V(—q/e). Hence
V(—q/¢) is dominated by M and we can show
The manifold V = N \ int(W) takes
only finitely many topological types
and the integer ¢ takes only finitely
many values.

The argument for integral homology spheres
can be modified to prove the following

Corollary 1. Any compact orientable 3-
manifold dominates at most finitely many knot
complements in S3.

Let E(k) be the exterior of a knot & in S°.
The dual graph I'(k) to the JSJ-decomposition
of F(k) is a rooted tree, where the root cor-
responds to the unique vertex manifold con-
taining OFE (k).
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Let w be a leaf of I' which is not the root.
Recall that S3 = E(k)UN(k). Let W be the
JSJ-piece of E(k) corresponding to w and let
V = S\ int(W). Then V is a solid torus
such that V' \ int(N(k)) = E(k) \ int(W),
which we will denote by U. Then we have
E(k) = UUy W, where ¢ : OV — OW is the
gluing map.

In the proof of Theorem 4, we proved the
finiteness of both integers p and ¢ by pinching
first V', then W. In the case of a knot com-
plement F/(k) we can only pinch W. However
in this case, only one integer is involved in de-
termining the gluing due to the fact that W
is the exterior of a non-trivial knot kyy in S°
which is determined by its exterior [GL].




Conjecture [Ki, Problem 1.12 (J. Simon)]

Given a knot k C S3, there are only finitely
many knots k; € S? for which there is an

epimorphism ¢; : m(E(k)) — m1(E(k;)).
The Conjecture is true if £ is small and each
epimorphism ¢; is 0-preserving [Reid-W].
Corollary 1 gives another answer to Simon’s
Conjecture.
Corollary 2. There are only finitely many
knots k; C S® for which there is an epimor-
phism ¢; - m(FE(k)) — m(E(k;)) such that

the 1mage of the longitude is non-trivial.
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Part K. 1-domination on knots

Boilaeu-Boyer-Rolfsen-Wang -L a.c é@n l)g,

Let g(k), A(k), Ay, V (k) be the genus, Alexan-
der module, Alexander polynomial, and Gro-
mov volume of k respectively.

If k&1 > ko, then

(1) g(k1) = g(kg) (Gabai);
(2) V(k1) = V(k2) (Gromov);
(3) Akl = Ak‘g @ A, in particular Ak‘2|Ak‘1;
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Alexander polynomial is easy to calculate
and (3) above already gives some interesting

applications.
Example 1.

(1) Figure 1 is a band connected sum k of
the trefoil knot 3; and the trivial knot with
Ag(t) = 1—t?+t* which contains no A3z (1) =
1 —t+1t2 as a factor. It follows that band con-
nected sum does not 1-dominates its factors

in general.




(2) Figure 2 is a Murasugi sum & of 59 and
4; with Ag(t) = 2 — 3t + 32 — 3¢5 + 2%,
which contain no either Ay () =1 — 3t + t2
or As,(t) =2—3t+ 2t% as a factor. It follows
that Murasugi sum does not 1-dominates its

factors in general.

—

A
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Corollary 1. (1) Any non-fiber knot with
Ar(t) leading coefficient # 1 does not 1-

dominate any fiber knots of the samge genus.
as g
(2) Suppose k1 and ko of the same genus,

k1 is an alternating knot and ko is a fiber
knot. Then k1 > ko tmplies k1 = ko.
Rigidity results about 1-dominations on knots
is "k > k' implies that k = £/, if ...
Some previous rigidity results are: k > k'
implies that k = &/,
(1) if £ and k' have the same Gromov volume

and k is hyperbolic [Gromov-Thurston]; or

(2) if k and k' have the same Alexander poly-
nomial and k is fibred; or

(3) if £ and k' have the same genus and k is
Seifert [Rong].
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Example 2. Non-trivial 1-dominations & —
k1 of the same genus, the same Alexander
polynomial, and the same Gromov volume.

Moreover all those invariants are non-vanishing.

longitude

Let k& = h(k;) be a satellite of k9 indicated
by Figure below. Then we have 1-domination
k — k1 given by dis-satellization.

The JSJ-piece of E(k) consists of three com-
ponents: two Seifert pieces and one hyper-
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bolic piece H, which is homeomorphic to the
Hopf link complement; and the JSJ-piece of
E(k1) consists of two components: one Seifert
piece and one hyperbolic piece H. It become
clear that both £ and k; are of genus 1, and
have the same Gromov volume which equal to
the hyperbolic volume of the Hopf link com-
plement. They also have the same Alexander
polynomials, since the h is longitude preserv-
ng.

There are arbitrary long 1-domination se-
quences of knots with the genus, Alexander

polynomials and Gromov volumes are all same.
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In Example 2, the fact that the winding
number of k£ with k9 is zero is essential in order
to construct non-trivial 1-domination £ > &y
with many invariants the same.

Indeed we have the following rigidity result.

Theorem. Suppose that any companion
of k has non-zero winding number. If k >
k" with the same Gromov volume and the
same genus, then k = k'.

26



Closely related rigidity results, we will study
the bound of the length n of 1-domination
sequences of knots kg > k1 > ko > ... > ky,
with given k.

Theorem. [Rong, Soma| Any 1-domination
sequence My > My > ... > M; > ...
of 3-manifolds in Thurston’s picture has a
bounded length for given M.

Definition.

(1) Say a Seifert surface S of a knot & is free
if £(k)\ S is a handlebody. Say a knot k is
free, it all its incompressible Seifert surfaces
are free.

(2) Define g(k) be the maximum g(.S) for all
incompressible Seifert surfaces S of k.
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(1) There are examples of g(k) = oo,

(2) g(k) = g(k) for fiber knots and 2-bridge
knots (Hatcher-Thurston).

(3) g(k) is bounded for alternating knots
(Menasco-Thistlethwaite) and for small knots
(Lackenby).

(4) alternating knots (Menasco), Montesinos
knots (Oertel) Small knots, fiber knots are
free knots;

(5) If a knot k has a companion of winding
number zero, then k is not free.

Proposition. Suppose kg is a free knot
with bounded §(kg). Then any 1-domination
sequence ko > k1 > .... > kn of knots has
n < g(ko).

28



Proof. The core of the proof is the follow-
ing simple fact.

Let k be a free knot, f : E(k) — E(k') be
a degree one map, and S’ be a Seifert surface
of k' with genus g(k’). By classical argument
in 3-manifold topology, f can be properly ho-
motoped so that S = f~1(S') is a connected
incompressible Seifert surface of &.

Then f induces a proper degree one
f* H=Ek)\S—=EK)\S =H

Since k is free, H is a handlebody, then H’ is
a handlebody.

One can easy to argue that if g(S) = g(9"),
then k = k'.
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