$\begin{array}{c} \textbf{Deformations of reducible} \\ \textbf{representations of 3-manifold groups} \\ \textbf{into} \ \mathrm{PSL}_2(\mathbf{C}) \end{array}$

Summer School and Conference on Geometry and Topology of 3-Manifolds

Michael Heusener and Joan Porti

Université Blaise Pascal, Clermont-Ferrand, France Universitat Autònoma, Barcelona, Catalonia arXiv:math.GT/0411365

Introduction

- Let M be a connected, compact, orientable, 3-manifold such that $\beta_1(M) = 1$ and such that $\partial M \cong S^1 \times S^1$ is a torus.
- Given a homomorphism $\alpha : \pi_1(M) \to \mathbb{C}^*$, we define an abelian representation $\rho_\alpha : \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$:

$$\rho_{\alpha}(\gamma) = \pm \begin{pmatrix} \alpha^{\frac{1}{2}}(\gamma) & 0\\ 0 & \alpha^{-\frac{1}{2}}(\gamma) \end{pmatrix} \qquad \forall \gamma \in \pi_{1}(M)$$

where $\alpha^{\frac{1}{2}} \colon \pi_1(M) \to \mathbb{C}^*$ is a map (not necessarily a homomorphism) such that $(\alpha^{\frac{1}{2}}(\gamma))^2 = \alpha(\gamma) \ \forall \gamma \in \pi_1(M)$.

• The representation ρ_{α} is reducible, ie $\rho_{\alpha}(\pi_1(M))$ has global fixed points in $P^1(\mathbf{C})$.

Question

- When can ρ_{α} be deformed into irreducible representations (ie representations whose image has no fixed point in $P^1(\mathbf{C})$)?
- Different versions of this question have been studied by
 - Frohman–Klassen, Herald and H–Kroll for SU(2);
 - H–Porti–Suarez and Shors for $SL_2(\mathbf{C})$;
 - Ben Abdelghani and Ben Abdelghani–Lines for semi-simple Lie groups.
- It was always assumed that $\alpha \mid_{tors(H_1(M))}$ is trivial.

Let M be given as in the introduction.

• $R(M) := \hom(\pi_1(M), \operatorname{PSL}_2(\mathbf{C}))$ denotes the variety of representations of $\pi_1(M)$ in $\operatorname{PSL}_2(\mathbf{C})$.

Let M be given as in the introduction.

- $R(M) := \hom(\pi_1(M), \operatorname{PSL}_2(\mathbf{C}))$ denotes the variety of representations of $\pi_1(M)$ in $\operatorname{PSL}_2(\mathbf{C})$.
- R(M) is an affine algebraic set

Let M be given as in the introduction.

- $R(M) := \hom(\pi_1(M), \operatorname{PSL}_2(\mathbf{C}))$ denotes the variety of representations of $\pi_1(M)$ in $\operatorname{PSL}_2(\mathbf{C})$.
- R(M) is an affine algebraic set
- $PSL_2(\mathbf{C})$ acts by conjugation on R(M)

Let M be given as in the introduction.

- $R(M) := \hom(\pi_1(M), \operatorname{PSL}_2(\mathbf{C}))$ denotes the variety of representations of $\pi_1(M)$ in $\operatorname{PSL}_2(\mathbf{C})$.
- R(M) is an affine algebraic set
- $PSL_2(\mathbf{C})$ acts by conjugation on R(M)
- If $\rho \in R(M)$ then $\chi_{\rho} \colon \pi_1(M) \to \mathbb{C}$ given by

 $\chi_{\rho}(\gamma) = (\operatorname{tr} \rho(\gamma))^2 \quad \forall \gamma \in \pi_1(M)$

is called the *character* of ρ .

Let M be given as in the introduction.

- $R(M) := \hom(\pi_1(M), \operatorname{PSL}_2(\mathbf{C}))$ denotes the variety of representations of $\pi_1(M)$ in $\operatorname{PSL}_2(\mathbf{C})$.
- R(M) is an affine algebraic set
- $PSL_2(\mathbf{C})$ acts by conjugation on R(M)
- If $\rho \in R(M)$ then $\chi_{\rho} \colon \pi_1(M) \to \mathbb{C}$ given by

 $\chi_{\rho}(\gamma) = (\operatorname{tr} \rho(\gamma))^2 \quad \forall \gamma \in \pi_1(M)$

is called the *character* of ρ .

The set of all characters X(M) can be identified with the algebraic quotient R(M)//PSL₂(C) and is called the *character variety* of M.

Theorems

Let α be a *simple* zero of the Alexander polynomial;

• then ρ_{α} is contained in precisely two irreducible components of R(M), one of dimension 4 containing irreducible representations and another of dimension 3 containing only abelian ones. In addition ρ_{α} is a smooth point of both varieties and the intersection at the orbit of ρ_{α} is transverse.

Theorems

Let α be a *simple* zero of the Alexander polynomial;

- then ρ_{α} is contained in precisely two irreducible components of R(M), one of dimension 4 containing irreducible representations and another of dimension 3 containing only abelian ones. In addition ρ_{α} is a smooth point of both varieties and the intersection at the orbit of ρ_{α} is transverse.
- then χ_{α} is contained in precisely two irreducible components of X(M), which are curves and are the quotients of the components of R(M). In addition χ_{α} is a smooth point of both curves and the intersection at χ_{α} is transverse.

• Let $\alpha \colon \pi_1(M) \to \mathbf{C}^*$ and $\varphi \colon \mathbf{Z} \to \mathbf{C}^*$ be given.

• Let $\alpha \colon \pi_1(M) \to \mathbf{C}^*$ and $\varphi \colon \mathbf{Z} \to \mathbf{C}^*$ be given.

• We define
$$\alpha \varphi \colon \pi_1(M) \to \mathbf{C}^*$$
 by

 $\alpha\varphi(\gamma) = \alpha(\gamma)\varphi(\phi(\gamma)) \quad \gamma \in \pi_1(M),$

where $\phi \in H^1(M; \mathbb{Z}) \cong \hom(H_1(M), \mathbb{Z})$ is a generator.

• Let $\alpha \colon \pi_1(M) \to \mathbf{C}^*$ and $\varphi \colon \mathbf{Z} \to \mathbf{C}^*$ be given.

• We define
$$\alpha \varphi \colon \pi_1(M) \to \mathbf{C}^*$$
 by

$$\alpha\varphi(\gamma) = \alpha(\gamma)\varphi(\phi(\gamma)) \quad \gamma \in \pi_1(M),$$

where $\phi \in H^1(M; \mathbb{Z}) \cong \hom(H_1(M), \mathbb{Z})$ is a generator.

Look at the one dimensional set

 $V_{\alpha} := \{ \rho_{\alpha\varphi} \mid \varphi \in \hom(\mathbf{Z}, \mathbf{C}^*) \} \subset R(M) \,.$

• Let $\alpha \colon \pi_1(M) \to \mathbf{C}^*$ and $\varphi \colon \mathbf{Z} \to \mathbf{C}^*$ be given.

• We define
$$\alpha \varphi \colon \pi_1(M) \to \mathbf{C}^*$$
 by

$$\alpha\varphi(\gamma) = \alpha(\gamma)\varphi(\phi(\gamma)) \quad \gamma \in \pi_1(M),$$

where $\phi \in H^1(M; \mathbb{Z}) \cong \hom(H_1(M), \mathbb{Z})$ is a generator.

Look at the one dimensional set

 $V_{\alpha} := \{ \rho_{\alpha\varphi} \mid \varphi \in \hom(\mathbf{Z}, \mathbf{C}^*) \} \subset R(M) \,.$

• The $PSL_2(\mathbf{C})$ orbit of $\rho_{\alpha\varphi}$ is two dimensional if $\alpha\varphi$ is nontrivial.

• Let $\alpha \colon \pi_1(M) \to \mathbf{C}^*$ and $\varphi \colon \mathbf{Z} \to \mathbf{C}^*$ be given.

• We define
$$\alpha \varphi \colon \pi_1(M) \to \mathbf{C}^*$$
 by

$$\alpha\varphi(\gamma) = \alpha(\gamma)\varphi(\phi(\gamma)) \quad \gamma \in \pi_1(M),$$

where $\phi \in H^1(M; \mathbb{Z}) \cong \hom(H_1(M), \mathbb{Z})$ is a generator.

Look at the one dimensional set

 $V_{\alpha} := \{ \rho_{\alpha\varphi} \mid \varphi \in \hom(\mathbf{Z}, \mathbf{C}^*) \} \subset R(M) \,.$

- The $PSL_2(\mathbf{C})$ orbit of $\rho_{\alpha\varphi}$ is two dimensional if $\alpha\varphi$ is nontrivial.
- Hence V_{α} is contained in an at least three dimensional component. We denote by $S_{\alpha}(M) \subset R(M)$ the closure of the $PSL_2(\mathbb{C})$ -orbit of V_{α} ($\Rightarrow \dim S_{\alpha}(M) \ge 3$).

• Fix a projection $p: H_1(M) \to tors(H_1(M))$ and a generator $\phi \in H^1(M) \cong hom(H_1(M), \mathbb{Z})$:

$$0 \longrightarrow \operatorname{tors}(H_1(M)) \longrightarrow H_1(M) \xrightarrow{\phi} \mathbf{Z} \longrightarrow 0$$

• Fix a projection $p: H_1(M) \to tors(H_1(M))$ and a generator $\phi \in H^1(M) \cong hom(H_1(M), \mathbb{Z})$:

• We obtain a section s_p' given by $s_p(\phi(z)) = z - p(z)$.

• Fix a projection $p: H_1(M) \to tors(H_1(M))$ and a generator $\phi \in H^1(M) \cong hom(H_1(M), \mathbb{Z})$:

- We obtain a section s_p' given by $s_p(\phi(z)) = z p(z)$.
- Let σ : tors $(H_1(M)) \rightarrow U(1)$ be a representation.

• Fix a projection $p: H_1(M) \to tors(H_1(M))$ and a generator $\phi \in H^1(M) \cong hom(H_1(M), \mathbb{Z})$:

- We obtain a section s'_p given by $s_p(\phi(z)) = z p(z)$.
- Let σ : tors $(H_1(M)) \rightarrow U(1)$ be a representation.
- Define $\phi_{\sigma} \colon \pi_1(M) \to \mathbb{C}[t^{\pm 1}]^*$ by $\phi_{\sigma}(\gamma) = \sigma(p(\gamma))t^{\phi(\gamma)}$.

In the sequel we shall write $R := \mathbf{C}[t^{\pm 1}]$.

• The twisted Alexander module $H_1^{\phi_{\sigma}}(M)$ is defined by

$$H_1^{\phi_\sigma}(M) = H_1(M, \mathbf{C}[t^{\pm 1}]_{\phi_\sigma}).$$

In the sequel we shall write $R := \mathbf{C}[t^{\pm 1}]$.

• The twisted Alexander module $H_1^{\phi_{\sigma}}(M)$ is defined by

$$H_1^{\phi_\sigma}(M) = H_1(M, \mathbf{C}[t^{\pm 1}]_{\phi_\sigma}).$$

• *R* is a P.I.D. and therefore $H_1^{\phi_{\sigma}}(M) = R/r_0 R \oplus \cdots \oplus R/r_m R$, where $r_i \in R$ and $r_{i+1} \mid r_i$.

In the sequel we shall write $R := \mathbf{C}[t^{\pm 1}]$.

• The twisted Alexander module $H_1^{\phi_{\sigma}}(M)$ is defined by

$$H_1^{\phi_\sigma}(M) = H_1(M, \mathbf{C}[t^{\pm 1}]_{\phi_\sigma}).$$

- *R* is a P.I.D. and therefore $H_1^{\phi_{\sigma}}(M) = R/r_0 R \oplus \cdots \oplus R/r_m R$, where $r_i \in R$ and $r_{i+1} \mid r_i$.
- the k-th twisted Alexander polynomial is given by

$$\Delta_k^{\phi_\sigma} = r_k r_{k+1} \cdots r_m \text{ and } \Delta^{\phi_\sigma} := \Delta_0^{\phi_\sigma}.$$

In the sequel we shall write $R := \mathbf{C}[t^{\pm 1}]$.

• The twisted Alexander module $H_1^{\phi_{\sigma}}(M)$ is defined by

$$H_1^{\phi_\sigma}(M) = H_1(M, \mathbf{C}[t^{\pm 1}]_{\phi_\sigma}).$$

- *R* is a P.I.D. and therefore $H_1^{\phi_{\sigma}}(M) = R/r_0 R \oplus \cdots \oplus R/r_m R$, where $r_i \in R$ and $r_{i+1} \mid r_i$.
- the k-th twisted Alexander polynomial is given by

$$\Delta_k^{\phi_\sigma} = r_k r_{k+1} \cdots r_m \text{ and } \Delta^{\phi_\sigma} := \Delta_0^{\phi_\sigma}.$$

• Note that $\Delta_k^{\phi_{\sigma}}$ and $H_1^{\phi_{\sigma}}(M)$ depend on the projection p and on the generator $\phi \in H^1(M)$.

The symmetry property

• Consider the following involution on $C[t^{\pm 1}]$:

$$\overline{\sum_{i} a_i t^i} = \sum_{i} \overline{a_i} t^{-i},$$

where $\overline{a_i}$ denotes the complex conjugate of $a_i \in \mathbf{C}$.

▲ An element $\eta \in \mathbb{C}[t^{\pm 1}]$ is called symmetric if there exists a unit $\epsilon \in \mathbb{C}[t^{\pm 1}]^*$ such that $\bar{\eta} = \epsilon \eta$.

The symmetry property

• Consider the following involution on $C[t^{\pm 1}]$:

$$\overline{\sum_{i} a_i t^i} = \sum_{i} \overline{a_i} t^{-i},$$

where $\overline{a_i}$ denotes the complex conjugate of $a_i \in \mathbf{C}$.

▲ An element $\eta \in \mathbb{C}[t^{\pm 1}]$ is called symmetric if there exists a unit $\epsilon \in \mathbb{C}[t^{\pm 1}]^*$ such that $\bar{\eta} = \epsilon \eta$.

Theorem: (Blanchfield) Let M be as in the introduction. Then for each homomorphism $\sigma: \operatorname{tors}(H_1(M; \mathbb{Z})) \to U(1)$ and for each projection $p: H_1(M) \to \operatorname{tors}(H_1(M))$ the polynomial $\Delta_k^{\phi_{\sigma}}$ is symmetric. \Box

• Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a representation and define $\sigma := \alpha \mid_{\operatorname{tors}(H_1(M))}$.

- Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a representation and define $\sigma := \alpha \mid_{\operatorname{tors}(H_1(M))}$.
- We say that α is a zero of the *k*-th Alexander invariant of order *r* if $a := \alpha(s_p(1)) \in \mathbb{C}^*$ is a zero of $\Delta_k^{\phi_{\sigma}}(t)$ of order *r*.

- Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a representation and define $\sigma := \alpha \mid_{\operatorname{tors}(H_1(M))}$.
- We say that α is a zero of the *k*-th Alexander invariant of order *r* if $a := \alpha(s_p(1)) \in \mathbb{C}^*$ is a zero of $\Delta_k^{\phi_{\sigma}}(t)$ of order *r*.
- This definition does not depend on the choice of the projection p and the generator ϕ .

- Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a representation and define $\sigma := \alpha \mid_{\operatorname{tors}(H_1(M))}$.
- We say that α is a zero of the *k*-th Alexander invariant of order *r* if $a := \alpha(s_p(1)) \in \mathbb{C}^*$ is a zero of $\Delta_k^{\phi_{\sigma}}(t)$ of order *r*.
- This definition does not depend on the choice of the projection p and the generator ϕ .
- Moreover we have $\alpha = \beta \circ \phi_{\sigma}$ where $\beta \colon \mathbf{C}[t^{\pm 1}] \to \mathbf{C}$ is simply the evaluation $\beta(\eta(t)) = \eta(a)$ at $a = \alpha(s_p(1))$.

André Weil's construction

Let $\rho: \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$ be a representation. The Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ turns into a $\pi_1(M)$ -module via $\mathrm{Ad} \circ \rho$ which will be denoted by $\mathfrak{sl}_2(\mathbb{C})_{\rho}$:

$$\gamma \circ x = \rho(\gamma) x \rho(\gamma^{-1}) \quad \forall x \in \mathfrak{sl}_2(\mathbf{C}).$$

There is a natural inclusion of the Zariski tangent space into the space of 1-cocycles $T_{\rho}R(\pi_1(M)) \hookrightarrow Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbf{C})_{\rho})$:

• Let ρ_{ϵ} be a path of representations through $\rho_0 = \rho$

André Weil's construction

Let $\rho: \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$ be a representation. The Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ turns into a $\pi_1(M)$ -module via $\mathrm{Ad} \circ \rho$ which will be denoted by $\mathfrak{sl}_2(\mathbb{C})_{\rho}$:

$$\gamma \circ x = \rho(\gamma) x \rho(\gamma^{-1}) \quad \forall x \in \mathfrak{sl}_2(\mathbf{C}).$$

There is a natural inclusion of the Zariski tangent space into the space of 1-cocycles $T_{\rho}R(\pi_1(M)) \hookrightarrow Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbf{C})_{\rho})$:

- Let ρ_{ϵ} be a path of representations through $\rho_0 = \rho$
- We define $d: \Gamma \to \mathfrak{sl}_2(\mathbf{C})_\rho$ by

$$d(\gamma) := \left. \frac{d \rho_{\epsilon}(\gamma)}{d \epsilon} \right|_{\epsilon=0} \rho(\gamma)^{-1}, \quad \forall \gamma \in \Gamma$$

Cocycles and coboundaries

• Then $d: \Gamma \to \mathfrak{sl}_2(\mathbf{C})_\rho$ is 1-cocycle ie, d satisfies:

 $d(\gamma_1\gamma_2) = d(\gamma_1) + \gamma_1 \circ d(\gamma_2), \ \forall \gamma_1, \gamma_2 \in \pi_1(M) .$

Cocycles and coboundaries

• Then $d: \Gamma \to \mathfrak{sl}_2(\mathbf{C})_\rho$ is 1-cocycle ie, d satisfies:

$$d(\gamma_1\gamma_2) = d(\gamma_1) + \gamma_1 \circ d(\gamma_2), \ \forall \gamma_1, \gamma_2 \in \pi_1(M).$$

If $\rho_{\epsilon} = A_{\epsilon}\rho A_{\epsilon}^{-1}$ such that A_0 is the identity then d is a **1-coboundary** ie, $\exists y \in \mathfrak{sl}_2(\mathbb{C})$ such that $d(\gamma) = (1 - \gamma) \circ y$ $\forall \gamma \in \pi_1(M)$.

Cocycles and coboundaries

• Then $d: \Gamma \to \mathfrak{sl}_2(\mathbf{C})_\rho$ is 1-cocycle ie, d satisfies:

$$d(\gamma_1\gamma_2) = d(\gamma_1) + \gamma_1 \circ d(\gamma_2), \ \forall \gamma_1, \gamma_2 \in \pi_1(M).$$

- If $\rho_{\epsilon} = A_{\epsilon}\rho A_{\epsilon}^{-1}$ such that A_0 is the identity then d is a **1-coboundary** ie, $\exists y \in \mathfrak{sl}_2(\mathbb{C})$ such that $d(\gamma) = (1 \gamma) \circ y$ $\forall \gamma \in \pi_1(M)$.
- The $\pi_1(M)$ -module $\mathfrak{sl}_2(\mathbf{C})_{\rho_{\alpha}}$ decomposes as $\mathfrak{sl}_2(\mathbf{C})_{\rho_{\alpha}} = \mathbf{C}_+ \oplus \mathbf{C}_0 \oplus \mathbf{C}_-$ where

$$\mathbf{C}_{+} = \mathbf{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{C}_{0} = \mathbf{C} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } \mathbf{C}_{-} = \mathbf{C} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Here C_0 is a trivial $\pi_1(M)$ -module and $\gamma \in \pi_1(M)$ acts on $z_{\pm} \in C_{\pm}$ via $\gamma \cdot z_{\pm} := \alpha(\gamma)^{\pm 1} z_{\pm}$.

Abelian representations

Note that $\alpha = \beta \circ \phi_{\sigma}$ implies that $\dim H^1(\pi_1(M); \mathbf{C}_{\pm}) = k$ iff α is a root of $\Delta_{k-1}^{\phi_{\sigma}}$ but not a root of $\Delta_k^{\phi_{\sigma}}$.

Abelian representations

Note that $\alpha = \beta \circ \phi_{\sigma}$ implies that $\dim H^{1}(\pi_{1}(M); \mathbf{C}_{\pm}) = k$ iff α is a root of $\Delta_{k-1}^{\phi_{\sigma}}$ but not a root of $\Delta_{k}^{\phi_{\sigma}}$. **Lemma:** Let $\alpha : \pi_{1}(M) \to \mathbf{C}^{*}$ be a representation. If α is not a zero of $\Delta^{\phi_{\sigma}}$ then ρ_{α} in R(M) is a smooth point of the component $S_{\alpha}(M)$. Moreover, $S_{\alpha}(M)$ is the unique component through ρ_{α} and $\dim S_{\alpha}(M) = 3$.

Abelian representations

Note that $\alpha = \beta \circ \phi_{\sigma}$ implies that $\dim H^{1}(\pi_{1}(M); \mathbf{C}_{\pm}) = k$ iff α is a root of $\Delta_{k-1}^{\phi_{\sigma}}$ but not a root of $\Delta_{k}^{\phi_{\sigma}}$. **Lemma:** Let $\alpha : \pi_{1}(M) \to \mathbf{C}^{*}$ be a representation. If α is not a zero of $\Delta^{\phi_{\sigma}}$ then ρ_{α} in R(M) is a smooth point of the component $S_{\alpha}(M)$. Moreover, $S_{\alpha}(M)$ is the unique component through ρ_{α} and $\dim S_{\alpha}(M) = 3$. **Proof:** We have

 $3 \leq \dim S_{\alpha}(M) \leq \dim_{\rho_{\alpha}} R(M) \leq \dim Z^{1}(\pi_{1}(M); \mathfrak{sl}_{2}(\mathbf{C})_{\alpha}).$

Hence dim $H^1(\pi_1(M); \mathbf{C}_{\pm}) = 0 \Rightarrow \dim Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbf{C})_{\alpha}) =$

3. 🗆

Metabelian representations

• Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a homomorphism and let $d : \pi_1(M) \to \mathbb{C}$ be a map. Then $\rho_{\alpha}^d : \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$ given by

$$\rho_{\alpha}^{d}(\gamma) = \begin{pmatrix} 1 & d(\gamma) \\ 0 & 1 \end{pmatrix} \rho_{\alpha}(\gamma) = \pm \begin{pmatrix} \alpha^{\frac{1}{2}}(\gamma) & \alpha^{-\frac{1}{2}}(\gamma)d(\gamma) \\ 0 & \alpha^{-\frac{1}{2}}(\gamma) \end{pmatrix}$$

is a homomorphism if and only if d satisfies $d(\gamma_1\gamma_2) = d(\gamma_1) + \alpha(\gamma_1)d(\gamma_2)$ ie, $d \in Z^1(\pi_1(M), \mathbf{C}_+)$. Moreover, ρ_{α}^d is non abelian if and only if d is not a coboundary.

Metabelian representations

• Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a homomorphism and let $d : \pi_1(M) \to \mathbb{C}$ be a map. Then $\rho_{\alpha}^d : \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$ given by

$$\rho_{\alpha}^{d}(\gamma) = \begin{pmatrix} 1 & d(\gamma) \\ 0 & 1 \end{pmatrix} \rho_{\alpha}(\gamma) = \pm \begin{pmatrix} \alpha^{\frac{1}{2}}(\gamma) & \alpha^{-\frac{1}{2}}(\gamma)d(\gamma) \\ 0 & \alpha^{-\frac{1}{2}}(\gamma) \end{pmatrix}$$

- is a homomorphism if and only if d satisfies $d(\gamma_1\gamma_2) = d(\gamma_1) + \alpha(\gamma_1)d(\gamma_2)$ ie, $d \in Z^1(\pi_1(M), \mathbf{C}_+)$. Moreover, ρ_{α}^d is non abelian if and only if d is not a coboundary.
- (Burde, DeRham) There exists a reducible, non abelian representation $\rho: \pi_1(M) \to PSL_2(\mathbb{C})$ such that $\chi_{\rho} = \chi_{\rho_{\alpha}}$ if and only if α is a zero of the Alexander invariant.

Cohomology of metabelian reps

From now on we'll suppose that α is a simple zero of the Alexander polynomial ($\Rightarrow H^1(\pi_1(M); \mathbf{C}_{\pm}) \cong \mathbf{C}$).

Suppose d_± ∈ Z¹(π₁(M); C_±) represents a generator of H¹(π₁(M); C_±). Denote by ρ[±] the metabelian representations into the upper/lower triangular group given

$$\rho^{+}(\gamma) = \begin{pmatrix} 1 & d_{+}(\gamma) \\ 0 & 1 \end{pmatrix} \rho_{\alpha}(\gamma) \quad \text{and} \quad \rho^{-}(\gamma) = \begin{pmatrix} 1 & 0 \\ d_{-}(\gamma) & 1 \end{pmatrix} \rho_{\alpha}(\gamma).$$

Cohomology of metabelian reps

From now on we'll suppose that α is a simple zero of the Alexander polynomial ($\Rightarrow H^1(\pi_1(M); \mathbf{C}_{\pm}) \cong \mathbf{C}$).

Suppose d_± ∈ Z¹(π₁(M); C_±) represents a generator of H¹(π₁(M); C_±). Denote by ρ[±] the metabelian representations into the upper/lower triangular group given

$$\rho^+(\gamma) = \begin{pmatrix} 1 & d_+(\gamma) \\ 0 & 1 \end{pmatrix} \rho_{\alpha}(\gamma) \quad \text{and} \quad \rho^-(\gamma) = \begin{pmatrix} 1 & 0 \\ d_-(\gamma) & 1 \end{pmatrix} \rho_{\alpha}(\gamma).$$

▶ Let $\mathfrak{b}_+ \subset \mathfrak{sl}_2(\mathbf{C})$ denote the Borel subalgebra of upper triangular matrices. It is a $\pi_1(M)$ -module via $\mathrm{Ad} \circ \rho^+$.

• There is a short exact sequence of $\pi_1(M)$ -modules:

$$0 \to \mathfrak{b}_+ \to \mathfrak{sl}_2(\mathbf{C})_{\rho^+} \to \mathbf{C}_- \to 0$$

which gives a long exact sequence in cohomology.

• There is a short exact sequence of $\pi_1(M)$ -modules:

$$0 \to \mathfrak{b}_+ \to \mathfrak{sl}_2(\mathbf{C})_{\rho^+} \to \mathbf{C}_- \to 0$$

which gives a long exact sequence in cohomology.

• **Proposition:** If α is a simple zero of the Alexander invariant then $H^1(\pi_1(M); \mathfrak{b}_+) = 0$ and the projection to the quotient $\mathfrak{sl}_2(\mathbf{C})_{\rho^+} \to \mathfrak{sl}_2(\mathbf{C})_{\rho^+}/\mathfrak{b}_+ \cong \mathbf{C}_-$ induces an isomorphism

 $H^1(\pi_1(M); \mathfrak{sl}_2(\mathbf{C})_{\rho^+}) \cong H^1(\pi_1(M); \mathbf{C}_-) \cong \mathbf{C}.$

Deformations

Let Γ be a group and let $\rho \in R(\Gamma)$.

• A formal deformation of ρ is a homomorphism $\rho_{\infty} \colon \Gamma \to \mathrm{PSL}_2(\mathbf{C}[[t]])$

$$\rho_{\infty}(\gamma) = \pm \exp(\sum_{i=1}^{\infty} t^{i} u_{i}(\gamma)) \rho(\gamma)$$

where $u_i \colon \Gamma \to \mathfrak{sl}_2(\mathbb{C})$ are maps such that $\rho_{\infty} \mid_{t=0} = \rho$. Here $\mathbb{C}[[t]]$ denotes the ring of formal power series.

Deformations

Let Γ be a group and let $\rho \in R(\Gamma)$.

■ A formal deformation of ρ is a homomorphism $\rho_{\infty} \colon \Gamma \to \mathrm{PSL}_2(\mathbf{C}[[t]])$

$$\rho_{\infty}(\gamma) = \pm \exp(\sum_{i=1}^{\infty} t^{i} u_{i}(\gamma)) \rho(\gamma)$$

where $u_i \colon \Gamma \to \mathfrak{sl}_2(\mathbb{C})$ are maps such that $\rho_{\infty} \mid_{t=0} = \rho$. Here $\mathbb{C}[[t]]$ denotes the ring of formal power series.

• ρ_{∞} is a homomorphism up to first order iff $u_1 \in Z^1(\Gamma, \mathfrak{sl}_2(\mathbf{C})_{\rho})$ is a cocycle. We call a cocycle $u_1 \in Z^1(\Gamma, \mathfrak{sl}_2(\mathbf{C})_{\rho})$ *integrable* if there is a formal deformation of ρ with leading term u_1 .

Obstructions

Let $u_1, \ldots, u_k \colon \Gamma \to \mathfrak{sl}_2(\mathbb{C})_{\rho}$ be given such that $\rho_k(\gamma) = \exp(\sum_{i=1}^k t^i u_i(\gamma))\rho(\gamma)$ is a homomorphism modulo t^{k+1} . Then there exists an obstruction class $\zeta_{k+1} \coloneqq \zeta_{k+1}^{(u_1,\ldots,u_k)} \in H^2(\Gamma; \mathfrak{sl}_2(\mathbb{C})_{\rho})$ with the following properties:

•
$$\exists u_{k+1} \colon \Gamma \to \mathfrak{sl}_2(\mathbf{C})$$
 such that
 $\rho_{k+1}(\gamma) = \exp(\sum_{i=1}^{k+1} t^i u_i(\gamma))\rho(\gamma)$ is a morphism modulo
 t^{k+2} if and only if $\zeta_{k+1} = 0$.

Obstructions

Let $u_1, \ldots, u_k \colon \Gamma \to \mathfrak{sl}_2(\mathbf{C})_{\rho}$ be given such that $\rho_k(\gamma) = \exp(\sum_{i=1}^k t^i u_i(\gamma))\rho(\gamma)$ is a homomorphism modulo t^{k+1} . Then there exists an obstruction class $\zeta_{k+1} := \zeta_{k+1}^{(u_1,\ldots,u_k)} \in H^2(\Gamma; \mathfrak{sl}_2(\mathbf{C})_{\rho})$ with the following properties:

•
$$\exists u_{k+1} \colon \Gamma \to \mathfrak{sl}_2(\mathbf{C})$$
 such that
 $\rho_{k+1}(\gamma) = \exp(\sum_{i=1}^{k+1} t^i u_i(\gamma))\rho(\gamma)$ is a morphism modulo
 t^{k+2} if and only if $\zeta_{k+1} = 0$.

• Naturality: if $f: \Gamma' \to \Gamma$ is a morphism then $f^*\rho_k := \rho_k \circ f$ is also a morphism modulo t^{k+1} and $f^*(\zeta_{k+1}^{(u_1,...,u_k)}) = \zeta_{k+1}^{(f^*u_1,...,f^*u_k)}$.

La Fin

Lemma: Let $\rho: \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$ be a reducible, non abelian representation such that $\dim Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{C})_{\rho}) = 4$. If $\rho \circ i_{\#}: \pi_1(\partial M) \to \mathrm{PSL}_2(\mathbb{C})$ is neither trivial nor a representation onto a Klein group then every cocycle in $Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{C})_{\rho})$ is integrable.

La Fin

Lemma: Let $\rho: \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C})$ be a reducible, non abelian representation such that $\dim Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{C})_{\rho}) = 4$. If $\rho \circ i_{\#}: \pi_1(\partial M) \to \mathrm{PSL}_2(\mathbb{C})$ is neither trivial nor a representation onto a Klein group then every cocycle in $Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{C})_{\rho})$ is integrable.

Corollary: The representation ρ^+ is a smooth point of R(M) with local dimension four.