Deformations of reducible representations of 3-manifold groups into $\mathrm{PSL}_{2}(\mathbf{C})$

Summer School and Conference on Geometry and Topology of 3-Manifolds

Michael Heusener and Joan Porti

Université Blaise Pascal, Clermont-Ferrand, France
Universitat Autònoma, Barcelona, Catalonia
arXiv:math.GT/0411365

Introduction

- Let M be a connected, compact, orientable, 3-manifold such that $\beta_{1}(M)=1$ and such that $\partial M \cong S^{1} \times S^{1}$ is a torus.
- Given a homomorphism $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$, we define an abelian representation $\rho_{\alpha}: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$:

$$
\rho_{\alpha}(\gamma)= \pm\left(\begin{array}{cc}
\alpha^{\frac{1}{2}}(\gamma) & 0 \\
0 & \alpha^{-\frac{1}{2}}(\gamma)
\end{array}\right) \quad \forall \gamma \in \pi_{1}(M)
$$

where $\alpha^{\frac{1}{2}}: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ is a map (not necessarily a homomorphism) such that $\left(\alpha^{\frac{1}{2}}(\gamma)\right)^{2}=\alpha(\gamma) \forall \gamma \in \pi_{1}(M)$.

- The representation ρ_{α} is reducible, ie $\rho_{\alpha}\left(\pi_{1}(M)\right)$ has global fixed points in $P^{1}(\mathbf{C})$.

Question

- When can ρ_{α} be deformed into irreducible representations (ie representations whose image has no fixed point in $\left.P^{1}(\mathbf{C})\right)$?
- Different versions of this question have been studied by
- Frohman-Klassen, Herald and H-Kroll for $\operatorname{SU}(2)$;
- H-Porti-Suarez and Shors for $\mathrm{SL}_{2}(\mathbf{C})$;
- Ben Abdelghani and Ben Abdelghani-Lines for semi-simple Lie groups.
- It was always assumed that $\left.\alpha\right|_{\operatorname{tors}\left(H_{1}(M)\right)}$ is trivial.

Notations

Let M be given as in the introduction.

- $R(M):=\operatorname{hom}\left(\pi_{1}(M), \mathrm{PSL}_{2}(\mathbf{C})\right)$ denotes the variety of representations of $\pi_{1}(M)$ in $\mathrm{PSL}_{2}(\mathbf{C})$.

Notations

Let M be given as in the introduction.

- $R(M):=\operatorname{hom}\left(\pi_{1}(M), \mathrm{PSL}_{2}(\mathbf{C})\right)$ denotes the variety of representations of $\pi_{1}(M)$ in $\mathrm{PSL}_{2}(\mathbf{C})$.
- $R(M)$ is an affine algebraic set

Notations

Let M be given as in the introduction.

- $R(M):=\operatorname{hom}\left(\pi_{1}(M), \mathrm{PSL}_{2}(\mathbf{C})\right)$ denotes the variety of representations of $\pi_{1}(M)$ in $\mathrm{PSL}_{2}(\mathbf{C})$.
- $R(M)$ is an affine algebraic set
- $\mathrm{PSL}_{2}(\mathbf{C})$ acts by conjugation on $R(M)$

Notations

Let M be given as in the introduction.

- $R(M):=\operatorname{hom}\left(\pi_{1}(M), \mathrm{PSL}_{2}(\mathbf{C})\right)$ denotes the variety of representations of $\pi_{1}(M)$ in $\mathrm{PSL}_{2}(\mathbf{C})$.
- $R(M)$ is an affine algebraic set
- $\mathrm{PSL}_{2}(\mathbf{C})$ acts by conjugation on $R(M)$
- If $\rho \in R(M)$ then $\chi_{\rho}: \pi_{1}(M) \rightarrow \mathbf{C}$ given by

$$
\chi_{\rho}(\gamma)=(\operatorname{tr} \rho(\gamma))^{2} \quad \forall \gamma \in \pi_{1}(M)
$$

is called the character of ρ.

Notations

Let M be given as in the introduction.

- $R(M):=\operatorname{hom}\left(\pi_{1}(M), \mathrm{PSL}_{2}(\mathbf{C})\right)$ denotes the variety of representations of $\pi_{1}(M)$ in $\mathrm{PSL}_{2}(\mathbf{C})$.
- $R(M)$ is an affine algebraic set
- $\mathrm{PSL}_{2}(\mathbf{C})$ acts by conjugation on $R(M)$
- If $\rho \in R(M)$ then $\chi_{\rho}: \pi_{1}(M) \rightarrow \mathbf{C}$ given by

$$
\chi_{\rho}(\gamma)=(\operatorname{tr} \rho(\gamma))^{2} \quad \forall \gamma \in \pi_{1}(M)
$$

is called the character of ρ.

- The set of all characters $X(M)$ can be identified with the algebraic quotient $R(M) / / \mathrm{PSL}_{2}(\mathbf{C})$ and is called the character variety of M.

Theorems

Let α be a simple zero of the Alexander polynomial;

- then ρ_{α} is contained in precisely two irreducible components of $R(M)$, one of dimension 4 containing irreducible representations and another of dimension 3 containing only abelian ones. In addition ρ_{α} is a smooth point of both varieties and the intersection at the orbit of ρ_{α} is transverse.

Theorems

Let α be a simple zero of the Alexander polynomial;

- then ρ_{α} is contained in precisely two irreducible components of $R(M)$, one of dimension 4 containing irreducible representations and another of dimension 3 containing only abelian ones. In addition ρ_{α} is a smooth point of both varieties and the intersection at the orbit of ρ_{α} is transverse.
- then χ_{α} is contained in precisely two irreducible components of $X(M)$, which are curves and are the quotients of the components of $R(M)$. In addition χ_{α} is a smooth point of both curves and the intersection at χ_{α} is transverse.

The abelian component

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ and $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ be given.

The abelian component

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ and $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ be given.
- We define $\alpha \varphi: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ by

$$
\alpha \varphi(\gamma)=\alpha(\gamma) \varphi(\phi(\gamma)) \quad \gamma \in \pi_{1}(M),
$$

where $\phi \in H^{1}(M ; \mathbf{Z}) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$ is a generator.

The abelian component

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ and $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ be given.
- We define $\alpha \varphi: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ by

$$
\alpha \varphi(\gamma)=\alpha(\gamma) \varphi(\phi(\gamma)) \quad \gamma \in \pi_{1}(M),
$$

where $\phi \in H^{1}(M ; \mathbf{Z}) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$ is a generator.

- Look at the one dimensional set

$$
V_{\alpha}:=\left\{\rho_{\alpha \varphi} \mid \varphi \in \operatorname{hom}\left(\mathbf{Z}, \mathbf{C}^{*}\right)\right\} \subset R(M) .
$$

The abelian component

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ and $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ be given.
- We define $\alpha \varphi: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ by

$$
\alpha \varphi(\gamma)=\alpha(\gamma) \varphi(\phi(\gamma)) \quad \gamma \in \pi_{1}(M),
$$

where $\phi \in H^{1}(M ; \mathbf{Z}) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$ is a generator.

- Look at the one dimensional set

$$
V_{\alpha}:=\left\{\rho_{\alpha \varphi} \mid \varphi \in \operatorname{hom}\left(\mathbf{Z}, \mathbf{C}^{*}\right)\right\} \subset R(M) .
$$

- The $\mathrm{PSL}_{2}(\mathbf{C})$ orbit of $\rho_{\alpha \varphi}$ is two dimensional if $\alpha \varphi$ is nontrivial.

The abelian component

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ and $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ be given.
- We define $\alpha \varphi: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ by

$$
\alpha \varphi(\gamma)=\alpha(\gamma) \varphi(\phi(\gamma)) \quad \gamma \in \pi_{1}(M),
$$

where $\phi \in H^{1}(M ; \mathbf{Z}) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$ is a generator.

- Look at the one dimensional set

$$
V_{\alpha}:=\left\{\rho_{\alpha \varphi} \mid \varphi \in \operatorname{hom}\left(\mathbf{Z}, \mathbf{C}^{*}\right)\right\} \subset R(M) .
$$

- The $\mathrm{PSL}_{2}(\mathbf{C})$ orbit of $\rho_{\alpha \varphi}$ is two dimensional if $\alpha \varphi$ is nontrivial.
- Hence V_{α} is contained in an at least three dimensional component. We denote by $S_{\alpha}(M) \subset R(M)$ the closure of the $\mathrm{PSL}_{2}(\mathbf{C})$-orbit of $V_{\alpha}\left(\Rightarrow \operatorname{dim} S_{\alpha}(M) \geq 3\right)$.

The Alexander polynomial: setup

- Fix a projection $p: H_{1}(M) \rightarrow \operatorname{tors}\left(H_{1}(M)\right)$ and a generator $\phi \in H^{1}(M) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$:

The Alexander polynomial: setup

- Fix a projection $p: H_{1}(M) \rightarrow \operatorname{tors}\left(H_{1}(M)\right)$ and a generator $\phi \in H^{1}(M) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$:

$$
\begin{array}{r}
0 \longrightarrow \operatorname{tors}\left(H_{1}(M)\right) \underbrace{\longrightarrow}_{p}{ }^{H_{1}(M)} \longrightarrow^{\frac{s_{p}}{\longrightarrow}} \mathbf{Z} \longrightarrow 0 \\
\text { btain a section } s_{p} \text { given by } s_{p}(\phi(z))=z-p(z) .
\end{array}
$$

The Alexander polynomial: setup

- Fix a projection $p: H_{1}(M) \rightarrow \operatorname{tors}\left(H_{1}(M)\right)$ and a generator $\phi \in H^{1}(M) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$:

$$
\begin{array}{r}
0 \longrightarrow \underbrace{\operatorname{tors}\left(H_{1}(M)\right)}_{p} \underbrace{H_{1}(M)} \longrightarrow^{s_{p}} \\
\text { btain a section } s_{p} \text { given by } s_{p}(\phi(z))=z-p(z) .
\end{array}
$$

- Let $\sigma: \operatorname{tors}\left(H_{1}(M)\right) \rightarrow \mathrm{U}(1)$ be a representation.

The Alexander polynomial: setup

- Fix a projection $p: H_{1}(M) \rightarrow \operatorname{tors}\left(H_{1}(M)\right)$ and a generator $\phi \in H^{1}(M) \cong \operatorname{hom}\left(H_{1}(M), \mathbf{Z}\right)$:

$$
\begin{aligned}
& 0 \longrightarrow \underbrace{\operatorname{tors}\left(H_{1}(M)\right)}_{p} \underbrace{H_{1}(M)} \longrightarrow^{s_{p}} \\
& \text { btain a section } s_{p} \text { given by } s_{p}(\phi(z))=z-p(z) .
\end{aligned}
$$

- Let $\sigma: \operatorname{tors}\left(H_{1}(M)\right) \rightarrow \mathrm{U}(1)$ be a representation.
- Define $\phi_{\sigma}: \pi_{1}(M) \rightarrow \mathbf{C}\left[t^{ \pm 1}\right]^{*}$ by $\phi_{\sigma}(\gamma)=\sigma(p(\gamma)) t^{\phi(\gamma)}$.

The twisted Alexander invariant

In the sequel we shall write $R:=\mathbf{C}\left[t^{ \pm 1}\right]$.

- The twisted Alexander module $H_{1}^{\phi_{\sigma}}(M)$ is defined by

$$
H_{1}^{\phi_{\sigma}}(M)=H_{1}\left(M, \mathbf{C}\left[t^{ \pm 1}\right]_{\phi_{\sigma}}\right) .
$$

The twisted Alexander invariant

In the sequel we shall write $R:=\mathbf{C}\left[t^{ \pm 1}\right]$.

- The twisted Alexander module $H_{1}^{\phi_{\sigma}}(M)$ is defined by

$$
H_{1}^{\phi_{\sigma}}(M)=H_{1}\left(M, \mathbf{C}\left[t^{ \pm 1}\right]_{\phi_{\sigma}}\right) .
$$

- R is a P.I.D. and therefore $H_{1}^{\phi_{\sigma}}(M)=R / r_{0} R \oplus \cdots \oplus R / r_{m} R$, where $r_{i} \in R$ and $r_{i+1} \mid r_{i}$.

The twisted Alexander invariant

In the sequel we shall write $R:=\mathbf{C}\left[t^{ \pm 1}\right]$.

- The twisted Alexander module $H_{1}^{\phi_{\sigma}}(M)$ is defined by

$$
H_{1}^{\phi_{\sigma}}(M)=H_{1}\left(M, \mathbf{C}\left[t^{ \pm 1}\right]_{\phi_{\sigma}}\right) .
$$

- R is a P.I.D. and therefore $H_{1}^{\phi_{\sigma}}(M)=R / r_{0} R \oplus \cdots \oplus R / r_{m} R$, where $r_{i} \in R$ and $r_{i+1} \mid r_{i}$.
- the k-th twisted Alexander polynomial is given by

$$
\Delta_{k}^{\phi_{\sigma}}=r_{k} r_{k+1} \cdots r_{m} \text { and } \Delta^{\phi_{\sigma}}:=\Delta_{0}^{\phi_{\sigma}} .
$$

The twisted Alexander invariant

In the sequel we shall write $R:=\mathbf{C}\left[t^{ \pm 1}\right]$.

- The twisted Alexander module $H_{1}^{\phi_{\sigma}}(M)$ is defined by

$$
H_{1}^{\phi_{\sigma}}(M)=H_{1}\left(M, \mathbf{C}\left[t^{ \pm 1}\right]_{\phi_{\sigma}}\right) .
$$

- R is a P.I.D. and therefore $H_{1}^{\phi_{\sigma}}(M)=R / r_{0} R \oplus \cdots \oplus R / r_{m} R$, where $r_{i} \in R$ and $r_{i+1} \mid r_{i}$.
- the k-th twisted Alexander polynomial is given by

$$
\Delta_{k}^{\phi_{\sigma}}=r_{k} r_{k+1} \cdots r_{m} \text { and } \Delta^{\phi_{\sigma}}:=\Delta_{0}^{\phi_{\sigma}} .
$$

- Note that $\Delta_{k}^{\phi_{\sigma}}$ and $H_{1}^{\phi_{\sigma}}(M)$ depend on the projection p and on the generator $\phi \in H^{1}(M)$.

The symmetry property

- Consider the following involution on $\mathbf{C}\left[t^{ \pm 1}\right]$:

$$
\overline{\sum_{i} a_{i} t^{i}}=\sum_{i} \overline{\bar{i}_{i}} t^{-i},
$$

where $\overline{a_{i}}$ denotes the complex conjugate of $a_{i} \in \mathbf{C}$.

- An element $\eta \in \mathbf{C}\left[t^{ \pm 1}\right]$ is called symmetric if there exists a unit $\epsilon \in \mathbf{C}\left[t^{ \pm 1}\right]^{*}$ such that $\bar{\eta}=\epsilon \eta$.

The symmetry property

- Consider the following involution on $\mathbf{C}\left[t^{ \pm 1}\right]$:

$$
\overline{\sum_{i} a_{i} t^{i}}=\sum_{i} \overline{\bar{a}_{i}} t^{-i},
$$

where $\overline{a_{i}}$ denotes the complex conjugate of $a_{i} \in \mathbf{C}$.

- An element $\eta \in \mathbf{C}\left[t^{ \pm 1}\right]$ is called symmetric if there exists a unit $\epsilon \in \mathbf{C}\left[t^{ \pm 1}\right]^{*}$ such that $\bar{\eta}=\epsilon \eta$.

Theorem: (Blanchfield) Let M be as in the introduction.
Then for each homomorphism $\sigma: \operatorname{tors}\left(H_{1}(M ; \mathbf{Z})\right) \rightarrow \mathrm{U}(1)$ and for each projection $p: H_{1}(M) \rightarrow \operatorname{tors}\left(H_{1}(M)\right)$ the polynomial $\Delta_{k}^{\phi_{\sigma}}$ is symmetric. \square

A zero of the Alexander polynomial

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a representation and define $\sigma:=\left.\alpha\right|_{\operatorname{tors}\left(H_{1}(M)\right)}$.

A zero of the Alexander polynomial

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a representation and define $\sigma:=\left.\alpha\right|_{\operatorname{tors}\left(H_{1}(M)\right)}$.
- We say that α is a zero of the k-th Alexander invariant of order r if $a:=\alpha\left(s_{p}(1)\right) \in \mathbf{C}^{*}$ is a zero of $\Delta_{k}^{\phi_{\sigma}}(t)$ of order r.

A zero of the Alexander polynomial

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a representation and define $\sigma:=\left.\alpha\right|_{\operatorname{tors}\left(H_{1}(M)\right)}$.
- We say that α is a zero of the k-th Alexander invariant of order r if $a:=\alpha\left(s_{p}(1)\right) \in \mathbf{C}^{*}$ is a zero of $\Delta_{k}^{\phi_{\sigma}}(t)$ of order r.
- This definition does not depend on the choice of the projection p and the generator ϕ.

A zero of the Alexander polynomial

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a representation and define $\sigma:=\left.\alpha\right|_{\text {tors }\left(H_{1}(M)\right)}$.
- We say that α is a zero of the k-th Alexander invariant of order r if $a:=\alpha\left(s_{p}(1)\right) \in \mathbf{C}^{*}$ is a zero of $\Delta_{k}^{\phi_{\sigma}}(t)$ of order r.
- This definition does not depend on the choice of the projection p and the generator ϕ.
- Moreover we have $\alpha=\beta \circ \phi_{\sigma}$ where $\beta: \mathbf{C}\left[t^{ \pm 1}\right] \rightarrow \mathbf{C}$ is simply the evaluation $\beta(\eta(t))=\eta(a)$ at $a=\alpha\left(s_{p}(1)\right)$.

André Weil's construction

Let $\rho: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ be a representation. The Lie algebra $\mathfrak{s l}_{2}(\mathbf{C})$ turns into a $\pi_{1}(M)$-module via Ad $\circ \rho$ which will be denoted by $\mathfrak{s l}_{2}(\mathbf{C})_{\rho}$:

$$
\gamma \circ x=\rho(\gamma) x \rho\left(\gamma^{-1}\right) \quad \forall x \in \mathfrak{s l}_{2}(\mathbf{C})
$$

There is a natural inclusion of the Zariski tangent space into the space of 1-cocycles $T_{\rho} R\left(\pi_{1}(M)\right) \hookrightarrow Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$:

- Let ρ_{ϵ} be a path of representations through $\rho_{0}=\rho$

André Weil's construction

Let $\rho: \pi_{1}(M) \rightarrow \operatorname{PSL}_{2}(\mathbf{C})$ be a representation. The Lie algebra $\mathfrak{s l}_{2}(\mathbf{C})$ turns into a $\pi_{1}(M)$-module via Ad $\circ \rho$ which will be denoted by $\mathfrak{s l}_{2}(\mathbf{C})_{\rho}$:

$$
\gamma \circ x=\rho(\gamma) x \rho\left(\gamma^{-1}\right) \quad \forall x \in \mathfrak{s l}_{2}(\mathbf{C}) .
$$

There is a natural inclusion of the Zariski tangent space into the space of 1-cocycles $T_{\rho} R\left(\pi_{1}(M)\right) \hookrightarrow Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$:

- Let ρ_{ϵ} be a path of representations through $\rho_{0}=\rho$
- We define $d: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho}$ by

$$
d(\gamma):=\left.\frac{d \rho_{\epsilon}(\gamma)}{d \epsilon}\right|_{\epsilon=0} \rho(\gamma)^{-1}, \quad \forall \gamma \in \Gamma .
$$

Cocycles and coboundaries

- Then $d: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho}$ is 1-cocycle ie, d satisfies:

$$
d\left(\gamma_{1} \gamma_{2}\right)=d\left(\gamma_{1}\right)+\gamma_{1} \circ d\left(\gamma_{2}\right), \forall \gamma_{1}, \gamma_{2} \in \pi_{1}(M) .
$$

Cocycles and coboundaries

- Then $d: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho}$ is 1-cocycle ie, d satisfies:

$$
d\left(\gamma_{1} \gamma_{2}\right)=d\left(\gamma_{1}\right)+\gamma_{1} \circ d\left(\gamma_{2}\right), \forall \gamma_{1}, \gamma_{2} \in \pi_{1}(M) .
$$

- If $\rho_{\epsilon}=A_{\epsilon} \rho A_{\epsilon}^{-1}$ such that A_{0} is the identity then d is a 1-coboundary ie, $\exists y \in \mathfrak{s l}_{2}(\mathbf{C})$ such that $d(\gamma)=(1-\gamma) \circ y$ $\forall \gamma \in \pi_{1}(M)$.

Cocycles and coboundaries

- Then $d: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho}$ is 1-cocycle ie, d satisfies:

$$
d\left(\gamma_{1} \gamma_{2}\right)=d\left(\gamma_{1}\right)+\gamma_{1} \circ d\left(\gamma_{2}\right), \forall \gamma_{1}, \gamma_{2} \in \pi_{1}(M) .
$$

- If $\rho_{\epsilon}=A_{\epsilon} \rho A_{\epsilon}^{-1}$ such that A_{0} is the identity then d is a 1-coboundary ie, $\exists y \in \mathfrak{s l}_{2}(\mathbf{C})$ such that $d(\gamma)=(1-\gamma) \circ y$ $\forall \gamma \in \pi_{1}(M)$.
- The $\pi_{1}(M)$-module $\mathfrak{s l}_{2}(\mathbf{C})_{\rho_{\alpha}}$ decomposes as $\mathfrak{s l}_{2}(\mathbf{C})_{\rho_{\alpha}}=\mathbf{C}_{+} \oplus \mathbf{C}_{0} \oplus \mathbf{C}_{-}$where

$$
\mathbf{C}_{+}=\mathbf{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \mathbf{C}_{0}=\mathbf{C}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { and } \mathbf{C}_{-}=\mathbf{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Here \mathbf{C}_{0} is a trivial $\pi_{1}(M)$-module and $\gamma \in \pi_{1}(M)$ acts on $z_{ \pm} \in \mathbf{C}_{ \pm}$via $\gamma \cdot z_{ \pm}:=\alpha(\gamma)^{ \pm 1} z_{ \pm}$.

Abelian representations

Note that $\alpha=\beta \circ \phi_{\sigma}$ implies that $\operatorname{dim} H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)=k$ iff α is a root of $\Delta_{k-1}^{\phi_{\sigma}}$ but not a root of $\Delta_{k}^{\phi_{\sigma}}$.

Abelian representations

Note that $\alpha=\beta \circ \phi_{\sigma}$ implies that $\operatorname{dim} H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)=k$ iff α is a root of $\Delta_{k-1}^{\phi_{\sigma}}$ but not a root of $\Delta_{k}^{\phi_{\sigma}}$.
Lemma: Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a representation. If α is not a zero of $\Delta^{\phi_{\sigma}}$ then ρ_{α} in $R(M)$ is a smooth point of the component $S_{\alpha}(M)$.
Moreover, $S_{\alpha}(M)$ is the unique component through ρ_{α} and $\operatorname{dim} S_{\alpha}(M)=3$.

Abelian representations

Note that $\alpha=\beta \circ \phi_{\sigma}$ implies that $\operatorname{dim} H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)=k$ iff α is a root of $\Delta_{k-1}^{\phi_{\sigma}}$ but not a root of $\Delta_{k}^{\phi_{\sigma}}$.
Lemma: Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a representation. If α is not a zero of $\Delta^{\phi_{\sigma}}$ then ρ_{α} in $R(M)$ is a smooth point of the component $S_{\alpha}(M)$.
Moreover, $S_{\alpha}(M)$ is the unique component through ρ_{α} and $\operatorname{dim} S_{\alpha}(M)=3$.

Proof: We have

$$
3 \leq \operatorname{dim} S_{\alpha}(M) \leq \operatorname{dim}_{\rho_{\alpha}} R(M) \leq \operatorname{dim} Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\alpha}\right) .
$$

Hence $\operatorname{dim} H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)=0 \Rightarrow \operatorname{dim} Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\alpha}\right)=$
3. \square

Metabelian representations

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a homomorphism and let $d: \pi_{1}(M) \rightarrow \mathbf{C}$ be a map. Then $\rho_{\alpha}^{d}: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ given by

$$
\rho_{\alpha}^{d}(\gamma)=\left(\begin{array}{cc}
1 & d(\gamma) \\
0 & 1
\end{array}\right) \rho_{\alpha}(\gamma)= \pm\left(\begin{array}{cc}
\alpha^{\frac{1}{2}}(\gamma) & \alpha^{-\frac{1}{2}}(\gamma) d(\gamma) \\
0 & \alpha^{-\frac{1}{2}}(\gamma)
\end{array}\right)
$$

is a homomorphism if and only if d satisfies $d\left(\gamma_{1} \gamma_{2}\right)=d\left(\gamma_{1}\right)+\alpha\left(\gamma_{1}\right) d\left(\gamma_{2}\right)$ ie, $d \in Z^{1}\left(\pi_{1}(M), \mathbf{C}_{+}\right)$. Moreover, ρ_{α}^{d} is non abelian if and only if d is not a coboundary.

Metabelian representations

- Let $\alpha: \pi_{1}(M) \rightarrow \mathbf{C}^{*}$ be a homomorphism and let $d: \pi_{1}(M) \rightarrow \mathbf{C}$ be a map. Then $\rho_{\alpha}^{d}: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ given by

$$
\rho_{\alpha}^{d}(\gamma)=\left(\begin{array}{cc}
1 & d(\gamma) \\
0 & 1
\end{array}\right) \rho_{\alpha}(\gamma)= \pm\left(\begin{array}{cc}
\alpha^{\frac{1}{2}}(\gamma) & \alpha^{-\frac{1}{2}}(\gamma) d(\gamma) \\
0 & \alpha^{-\frac{1}{2}}(\gamma)
\end{array}\right)
$$

is a homomorphism if and only if d satisfies $d\left(\gamma_{1} \gamma_{2}\right)=d\left(\gamma_{1}\right)+\alpha\left(\gamma_{1}\right) d\left(\gamma_{2}\right)$ ie, $d \in Z^{1}\left(\pi_{1}(M), \mathbf{C}_{+}\right)$. Moreover, ρ_{α}^{d} is non abelian if and only if d is not a coboundary.

- (Burde, DeRham) There exists a reducible, non abelian representation $\rho: \pi_{1}(M) \rightarrow \operatorname{PSL}_{2}(\mathbf{C})$ such that $\chi_{\rho}=\chi_{\rho_{\alpha}}$ if and only if α is a zero of the Alexander invariant.

Cohomology of metabelian reps

From now on we'll suppose that α is a simple zero of the Alexander polynomial ($\Rightarrow H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right) \cong \mathbf{C}$).

- Suppose $d_{ \pm} \in Z^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)$represents a generator of $H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)$. Denote by $\rho^{ \pm}$the metabelian representations into the upper/lower triangular group given

$$
\rho^{+}(\gamma)=\left(\begin{array}{cc}
1 & d_{+}(\gamma) \\
0 & 1
\end{array}\right) \rho_{\alpha}(\gamma) \quad \text { and } \quad \rho^{-}(\gamma)=\left(\begin{array}{cc}
1 & 0 \\
d_{-}(\gamma) & 1
\end{array}\right) \rho_{\alpha}(\gamma) .
$$

Cohomology of metabelian reps

From now on we'll suppose that α is a simple zero of the Alexander polynomial $\left(\Rightarrow H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right) \cong \mathbf{C}\right)$.

- Suppose $d_{ \pm} \in Z^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)$represents a generator of $H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{ \pm}\right)$. Denote by $\rho^{ \pm}$the metabelian representations into the upper/lower triangular group given

$$
\rho^{+}(\gamma)=\left(\begin{array}{cc}
1 & d_{+}(\gamma) \\
0 & 1
\end{array}\right) \rho_{\alpha}(\gamma) \quad \text { and } \quad \rho^{-}(\gamma)=\left(\begin{array}{cc}
1 & 0 \\
d_{-}(\gamma) & 1
\end{array}\right) \rho_{\alpha}(\gamma) .
$$

- Let $\mathfrak{b}_{+} \subset \mathfrak{s l}_{2}(\mathbf{C})$ denote the Borel subalgebra of upper triangular matrices. It is a $\pi_{1}(M)$-module via $\mathrm{Ad} \circ \rho^{+}$.
- There is a short exact sequence of $\pi_{1}(M)$-modules:

$$
0 \rightarrow \mathfrak{b}_{+} \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho^{+}} \rightarrow \mathbf{C}_{-} \rightarrow 0
$$

which gives a long exact sequence in cohomology.

- There is a short exact sequence of $\pi_{1}(M)$-modules:

$$
0 \rightarrow \mathfrak{b}_{+} \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho^{+}} \rightarrow \mathbf{C}_{-} \rightarrow 0
$$

which gives a long exact sequence in cohomology.

- Proposition: If α is a simple zero of the Alexander invariant then $H^{1}\left(\pi_{1}(M) ; \mathfrak{b}_{+}\right)=0$ and the projection to the quotient $\mathfrak{s l}_{2}(\mathbf{C})_{\rho^{+}} \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho^{+}} / \mathfrak{b}_{+} \cong \mathbf{C}_{-}$induces an isomorphism

$$
H^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho^{+}}\right) \cong H^{1}\left(\pi_{1}(M) ; \mathbf{C}_{-}\right) \cong \mathbf{C} .
$$

Deformations

Let Γ be a group and let $\rho \in R(\Gamma)$.

- A formal deformation of ρ is a homomorphism $\left.\rho_{\infty}: \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbf{C}[t]]\right)$

$$
\rho_{\infty}(\gamma)= \pm \exp \left(\sum_{i=1}^{\infty} t^{i} u_{i}(\gamma)\right) \rho(\gamma)
$$

where $u_{i}: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})$ are maps such that $\left.\rho_{\infty}\right|_{t=0}=\rho$. Here $\mathbf{C}[[t]]$ denotes the ring of formal power series.

Deformations

Let Γ be a group and let $\rho \in R(\Gamma)$.

- A formal deformation of ρ is a homomorphism $\left.\rho_{\infty}: \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbf{C}[t]]\right)$

$$
\rho_{\infty}(\gamma)= \pm \exp \left(\sum_{i=1}^{\infty} t^{i} u_{i}(\gamma)\right) \rho(\gamma)
$$

where $u_{i}: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})$ are maps such that $\left.\rho_{\infty}\right|_{t=0}=\rho$. Here $\mathbf{C}[t t]$ denotes the ring of formal power series.

- ρ_{∞} is a homomorphism up to first order iff $u_{1} \in Z^{1}\left(\Gamma, \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$ is a cocycle. We call a cocycle $u_{1} \in Z^{1}\left(\Gamma, \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$ integrable if there is a formal deformation of ρ with leading term u_{1}.

Obstructions

Let $u_{1}, \ldots, u_{k}: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho}$ be given such that
$\rho_{k}(\gamma)=\exp \left(\sum_{i=1}^{k} t^{i} u_{i}(\gamma)\right) \rho(\gamma)$ is a homomorphism modulo t^{k+1}. Then there exists an obstruction class
$\zeta_{k+1}:=\zeta_{k+1}^{\left(u_{1}, \ldots, u_{k}\right)} \in H^{2}\left(\Gamma ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$ with the following properties:

- $\exists u_{k+1}: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})$ such that
$\rho_{k+1}(\gamma)=\exp \left(\sum_{i=1}^{k+1} t^{i} u_{i}(\gamma)\right) \rho(\gamma)$ is a morphism modulo t^{k+2} if and only if $\zeta_{k+1}=0$.

Obstructions

Let $u_{1}, \ldots, u_{k}: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})_{\rho}$ be given such that
$\rho_{k}(\gamma)=\exp \left(\sum_{i=1}^{k} t^{i} u_{i}(\gamma)\right) \rho(\gamma)$ is a homomorphism modulo t^{k+1}. Then there exists an obstruction class
$\zeta_{k+1}:=\zeta_{k+1}^{\left(u_{1}, \ldots, u_{k}\right)} \in H^{2}\left(\Gamma ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$ with the following properties:

- $\exists u_{k+1}: \Gamma \rightarrow \mathfrak{s l}_{2}(\mathbf{C})$ such that
$\rho_{k+1}(\gamma)=\exp \left(\sum_{i=1}^{k+1} t^{i} u_{i}(\gamma)\right) \rho(\gamma)$ is a morphism modulo t^{k+2} if and only if $\zeta_{k+1}=0$.
- Naturality: if $f: \Gamma^{\prime} \rightarrow \Gamma$ is a morphism then $f^{*} \rho_{k}:=\rho_{k} \circ f$ is also a morphism modulo t^{k+1} and

$$
f^{*}\left(\zeta_{k+1}^{\left(u_{1}, \ldots, u_{k}\right)}\right)=\zeta_{k+1}^{\left(f^{*} u_{1}, \ldots, f^{*} u_{k}\right)} .
$$

La Fin

Lemma: Let $\rho: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ be a reducible, non abelian representation such that $\operatorname{dim} Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)=4$. If $\rho \circ i_{\#}: \pi_{1}(\partial M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ is neither trivial nor a representation onto a Klein group then every cocycle in $Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$ is integrable.

La Fin

Lemma: Let $\rho: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ be a reducible, non abelian representation such that $\operatorname{dim} Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)=4$. If $\rho \circ i_{\#}: \pi_{1}(\partial M) \rightarrow \mathrm{PSL}_{2}(\mathbf{C})$ is neither trivial nor a representation onto a Klein group then every cocycle in $Z^{1}\left(\pi_{1}(M) ; \mathfrak{s l}_{2}(\mathbf{C})_{\rho}\right)$ is integrable.

Corollary: The representation ρ^{+}is a smooth point of $R(M)$ with local dimension four.

